


# RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES

# RED DE NIVEL II MEMORIA – 2022

PARCELA 26 Qi (JAEN)

2022



DIRECCIÓN GENERAL DE BIODIVERSIDAD, BOSQUES Y DESERTIFICACIÓN

SUBDIRECCIÓN GENERAL DE POLÍTICA FORESTAL Y LUCHA CONTRA LA DESERTIFICACIÓN ÁREA DE INVENTARIO Y ESTADÍSTICAS FORESTALES



Tecmena, s. l.
TECNICAS DEL MEDIO NATURAL

Clara del Rey, 22 28002 Madrid Tel. 91 413 70 07 Fax. 91 510 20 57 correo@tecmena.com

# 26 Qi (JAÉN)

#### Año 2022

#### Índice

|    | Situación de la parcela                     | 1        |
|----|---------------------------------------------|----------|
| 2. | Caracterización de la parcela               | 2        |
|    | 2.1. Climatología                           | 2        |
|    | 2.2. Geología y suelos                      | 2        |
|    | 2.3. Vegetación                             | 7        |
|    | 2.4. Caracterización forestal y dasométrica | 8        |
| 3. | Estado fitosanitario de la parcela          | 9        |
|    | 3.1. Defoliación y decoloración             | 9        |
|    | 3.2. Daños forestales                       | 11       |
| 4. | Instrumentación                             | 21       |
|    | Deposición atmosférica                      | 23       |
|    | 5.1. pH                                     | 25       |
|    | 5.2. Conductividad                          | 26       |
|    | 5.3. Potasio                                | 27       |
|    | 5.4. Calcio                                 | 28       |
|    | 5.5. Magnesio                               | 30       |
|    | 5.6. Sodio                                  | 31       |
|    | 5.7. Amonio                                 | 32       |
|    | 5.8. Cloro                                  | 33       |
|    | 5.9. Nitratos                               | 35       |
|    | 5.10. Sulfatos                              | 36       |
|    | 5.11. Alcalinidad                           | 37       |
|    | 5.12. Nitrógeno total                       | 38       |
|    | 5.13. Carbono orgánico disuelto.            | 40       |
|    | 5.14. Aluminio                              | 40       |
|    |                                             |          |
|    | 5.15. Manganeso                             | 41<br>42 |
|    | 5.16. Hierro                                |          |
|    | 5.17. Interpretación de resultados          | 43       |
|    | Calidad del aire. Inmisión                  | 45       |
| /. | Análisis foliar                             | 46       |
|    | 7.1. Macronutrientes                        | 46       |
|    | 7.2. Micronutrientes                        | 50       |
| _  | 7.3. Interpretación de resultados           | 51       |
|    | Desfronde                                   | 52       |
|    | Fenología                                   | 55       |
|    | . Cintas diamétricas                        | 57       |
|    | . Meteorología                              | 58       |
| 12 | Índice de Área Foliar                       | 60       |

#### INDICE DE TABLAS

| $\mathbf{T}_{A}$ | A | BLA | 1: | Características | de | la | parcela. |
|------------------|---|-----|----|-----------------|----|----|----------|
|------------------|---|-----|----|-----------------|----|----|----------|

- TABLA 2: Datos meteorológicos parcela.
- **TABLA 3**: Inventario florístico 2007-2009
- TABLA 4: Características dasométricas
- TABLA 5: Distribución de agentes dañinos en la parcela
- TABLA 6: Distribución de síntomas y signos en la parcela
- TABLA 7: Relación entre agentes, síntomas y signos observados
- TABLA 8: Equipos de medición instalados
- TABLA 9: Parámetros descriptores de la deposición atmosférica
- TABLA 10: Caracterización pH
- TABLA 11: Caracterización conductividad
- TABLA 12: Caracterización potasio
- TABLA 13: Caracterización calcio
- TABLA 14: Caracterización magnesio



- TABLA 15: Caracterización sodio
- TABLA 16: Caracterización amonio
- TABLA 17: Caracterización cloro
- TABLA 18: Caracterización nitratos
- TABLA 19: Caracterización sulfatos
- TABLA 20: Caracterización alcalinidad
- TABLA 21: Caracterización nitrógeno total
- TABLA 22: Caracterización carbono orgánico disuelto
- TABLA 23: Caracterización aluminio
- TABLA 24: Caracterización manganeso
- TABLA 25: Caracterización hierro
- TABLA 26: Valores de referencia de inmisión atmosférica
- TABLA 27: Inmisión atmosférica
- TABLA 28: Análisis foliares por campaña bianual de muestreo para la parcela y especie. Macronutrientes
- TABLA 29: Análisis foliares por campaña bianual de muestreo para la parcela y especie. Micronutrientes
- TABLA 30: Resultados medios del análisis de desfronde
- TABLA 31: Resultados de la evaluación fenológica
- **TABLA 32**: Valor medio dendrómetros
- TABLA 33: Valores medios meteorológicos
- TABLA 34: Parámetros de estrés meteorológico
- TABLA 35: Índices de Área Foliar

#### INDICE DE FIGURAS

- FIG 1: Posición y vistas de la parcela
- FIG 2: Climodiagrama de la parcela
- FIG 3: Caracterización dasométrica de la parcela
- FIG 4: Histograma de defoliaciones por clases de daño y defoliación media
- FIG 5: Tipos de defoliación
- FIG 6: Daños forestales
- FIG 7: Instrumentación
- FIG 8: Variación temporal de pH
- FIG 9: Variación temporal de conductividad
- FIG 10: Variación temporal de potasio
- FIG 11: Variación temporal de calcio
- FIG 12: Variación temporal de magnesio
- FIG 13: Variación temporal de sodio
- FIG 14: Variación temporal de amonio
- FIG 15: Variación temporal de cloro
- FIG 16: Variación temporal de nitratos
- FIG 17: Variación temporal de sulfatos
- FIG 18: Variación temporal de alcalinidad
- FIG 19: Variación temporal de nitrógeno total
- FIG 20: Variación temporal de carbono orgánico disuelto
- FIG 21: Variación temporal de aluminio
- FIG 22: Variación temporal de manganeso
- FIG 23: Variación temporal de hierro
- FIG 24: Variación temporal de inmisión por dosímetros
- FIG 25: Evolución de macronutrientes
- FIG 26: Evolución de micronutrientes
- FIG 27: Fracciones de desfronde o litterfall. Serie histórica
- FIG 28: Fases fenológicas. Inicio de fase
- FIG 29: Fases fenológicas
- FIG 30: Crecimiento diametral anual
- FIG 31: Principales variables meteorológicas
- FIG 32: Índices de Área Foliar
- FIG 33: Fotos hemisféricas



# 1. Situación de la parcela.

La parcela representa el encinar de *Quercus ilex* del sector Mariánico-Monchiquense de la provincia Luso-Extremadurense (Rivas-Martínez).

Sus principales características se resumen en la siguiente tabla:

TABLA 1: Características de la parcela.

| PARCELA | ESPECIE      | PROVINCIA | T. MUNICIPAL | REPLANTEO  | NIVEL |
|---------|--------------|-----------|--------------|------------|-------|
| 26 Qi   | Quercus ilex | Jaén      | Andújar      | 07/09/1994 | III   |

| LATITUD    | LONGITUD                | XUTM    | YUTM      | ALTITUD | PENDIENTE | ORIENTACIÓN | PARAJE       |
|------------|-------------------------|---------|-----------|---------|-----------|-------------|--------------|
| +38011'00" | -04 <sup>0</sup> 05'00" | 405.000 | 4.228.000 | 610     | 10        | Oeste       | Fuencubierta |

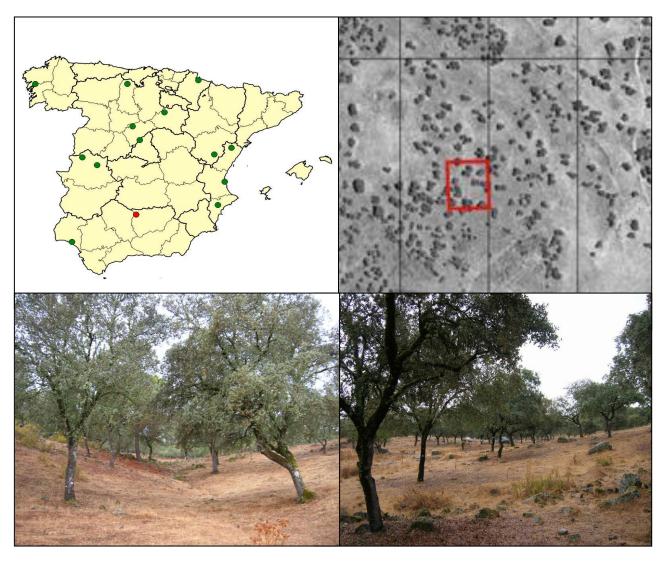



FIG 1: Posición y vistas de la parcela 26Qi



### 2. Caracterización de la parcela.

#### 2.1. Climatología.

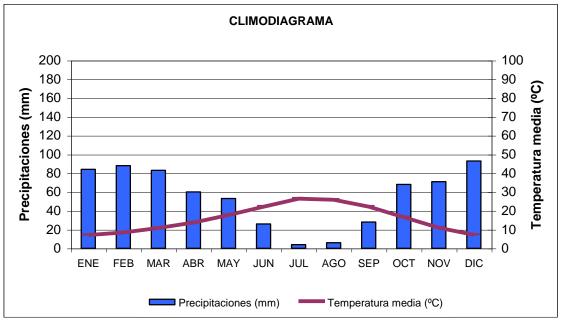
Las principales características de la parcela se dan en la siguiente tabla:

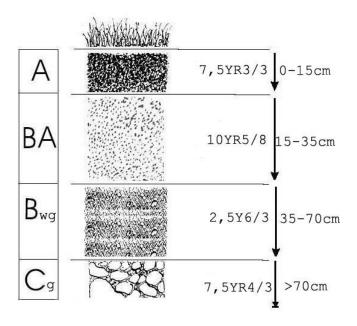
TABLA 2: Datos meteorológicos estación ecológica (Modelos y Cartografía de Estimaciones Climáticas Termopluviométricas de la España Peninsular. Sánchez Palomares et al. Datación 1940-1990. INIA, 1999).

|       | ENE                                  | FEB | MAR  | ABR  | MAY  | JUN  | JUL  | AGO  | SEP  | OCT  | NOV  | DIC | AÑO  |
|-------|--------------------------------------|-----|------|------|------|------|------|------|------|------|------|-----|------|
| T(°C) | 7,1                                  | 8,4 | 10,8 | 13,7 | 17,7 | 22,2 | 26,4 | 25,8 | 22,2 | 16,5 | 10,9 | 7,2 | 15,7 |
| P(mm) | 84                                   | 88  | 83   | 60   | 53   | 26   | 4    | 6    | 28   | 68   | 71   | 93  | 665  |
|       | T. Media Máximas Mes más Cálido 34,5 |     |      |      |      |      |      |      |      |      |      |     |      |
|       | 2,7 T. Media Mínimas Mes más Frío    |     |      |      |      |      |      |      |      |      |      |     |      |

De acuerdo a clasificación de Allué, el clima se corresponde con un IV4 Mediterráneo genuino.

De acuerdo a la clasificación en pisos bioclimáticos, la parcela se encuentra en el *Piso Mesomediterráneo*.

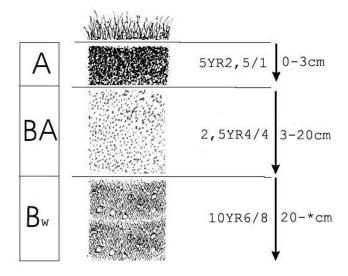




FIG 2: Climodiagrama de la parcela

#### 2.2. Geología y Suelos.

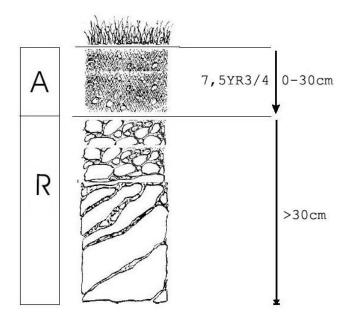
Litología: granito.

**Edafología:** Dystric Cambisol / Gleyc Cambisol / Dystric leptosol / Umbric gleysol.


*Dystric Cambisol:* En este suelo existe una capa freática temporal. La parte activa del suelo está limitada a los 35 cm superficiales, donde hay una buena incorporación de materia orgánica e importante actividad de la fauna edáfica. Por debajo la capa freática y el carácter masivo limitan el desarrollo radicular.

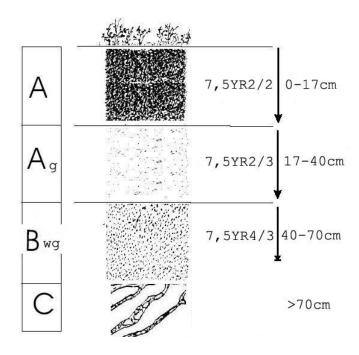


| Horizonte   | Espesor (cm) | Descripción                                                                                                                                                                                                                                          |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A           | 0-15         | Pardo oscuro (7.5 YR 3/3) en húmedo; areno-arcilloso; estructura grumosa, mediana, moderada; muy friable en húmedo; muy poroso; frecuentes raíces, muy finas; fuerte actividad de la fauna (lombrices); límite neto y ligeramente ondulado.          |
| BA          | 15-35        | Pardo amarillento (10 YR 5/8) en húmedo; areno-arcilloso; estructura masiva, poliédrica angular, gruesa, débil; muy friable en húmedo; muy poroso; buena actividad de la fauna (lombrices); límite difuso y plano.                                   |
| $B_{ m wg}$ | 35-70        | Pardo amarillento claro (2.5 Y 6/3) en húmedo, 1% de manchas de hierro pardo-rojizas, poco destacadas, (0.5 cm); estructura masiva; muy friable en húmedo; abundantes poros muy finos; pocas raíces, muy finas; no se observa actividad de la fauna. |
| $C_{ m g}$  | 70           | Pardo (7.5 YR 4/3) en húmedo; granito de grano fino, arenizado, con vetas grises de hidromorfismo.                                                                                                                                                   |


**A**ÑO 2022

Gleyc Cambisol: Presenta un nivel freático muy superficial de una capa freática temporal.




| Horizonte    | Espesor (cm) | Descripción                                                                                                                                                                                                                                                           |
|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A            | 0-23         | Pardo oscuro (7.5 YR 3/2) en húmedo; arenoso; estructura grumosa, muy fina, moderada; algunas gravas redondeadas de granito; muy friable en húmedo; muy poroso; poca-frecuentes raíces de todos los tamaños; abundante actividad de la fauna; límite gradual y plano. |
| $B_{ m wg1}$ | 23-50        | Rojo débil (2.5 Y 6/3) en húmedo; 7% de pequeñas manchas poco contrastadas,(7.5 YR 5/8); arenoso; estructura masiva; muy friable en húmedo; muchos poros, muy finos; límite gradual y plano.                                                                          |
| Bwg2         | 50-90        | Rojo débil (2.5 YR 6/2) en húmedo; 50% de grandes manchas (1-2 cm), moderadamente contrastadas, amarillo rojizo (7.5 YR 5.5/8); arenoso; estructura masiva; muy friable en húmedo; muy pocas raíces, gruesas; muy poroso; límite neto y irregular.                    |
| Cg           | 90           | Granito arenizado con segregación de Fe por alteración de las biotitas.                                                                                                                                                                                               |

*Dystric leptosol*: Es un perfil con mínimo desarrollo y reducido espesor, representa una de las zonas donde la roca, debido a su límite superior irregular, está muy cerca de la superficie.



| Horizonte | Espesor (cm) | Descripción                                                                                                                                                                                                              |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A         | 0-30         | Pardo oscuro (7.5 YR 3/4) en húmedo; arenosa; estructura grumosa, muy fina, moderada; muy friable en húmedo; muy poroso; pocas raíces, muy finas; moderada actividad de la fauna (lombrices); límite brusco e irregular. |
| R         | 30           | Granito de grano grueso.                                                                                                                                                                                                 |

*Umbric gleysol:* El perfil representa los suelos de la nava, con pendiente muy reducida y capa freática temporal. El conjunto de características favorables derivadas de la riqueza en materia orgánica, buena estructura y buena actividad de la fauna, a lo que se suma la topografía llana, determinan que sea el suelo más productivo de la parcela.



| Horizonte   | Espesor (cm) | Descripción                                                                                                                                                                                                                                                                                 |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A           | 0-17         | Pardo muy oscuro (7.5 YR 2/2) en húmedo; arenosa; estructura grumosa, fina, moderada; muy friable en húmedo; muy poroso; poca-frecuentes raíces finas; fuerte actividad de la fauna (hormigas); límite neto y plano.                                                                        |
| $ m A_g$    | 17-40        | Pardo muy oscuro (7.5 YR 2/3) en húmedo; 5% de manchas medianas (1cm) de herrumbre, pardo rojizas; arenoso; estructura poliédrica angular, media, débil; muy friable en húmedo; muy poroso; poca- frecuentes raíces finas; fuerte actividad de la fauna; límite gradual y plano.            |
| $B_{ m wg}$ | 40-70        | Pardo (7.5 YR 4/3) en húmedo; 20% de manchas de herrumbre, pardo oscuras, poco destacadas; arenoso; estructura poliédrica angular, media, débil; muy friable en húmedo; poca-frecuentes raíces medianas; muy poroso; 10% de nódulos rojizos cementados (0.5 cm); límite brusco e irregular. |
| R           | 70           | Granito de grano grueso.                                                                                                                                                                                                                                                                    |

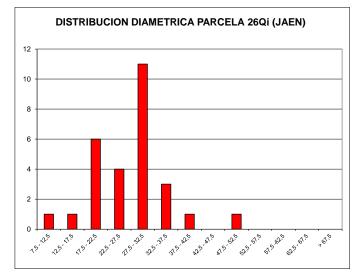
#### 2.3. Vegetación.

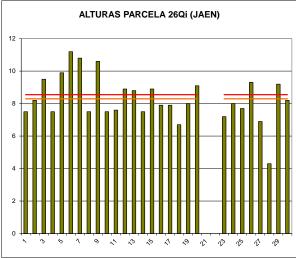
**Vegetación actual:** Parcela situada en ladera de suave pendiente, cruzada por un barranquete que deja derrubios finos en su parte inferior, en los que se asienta una pequeña población de juncos. El vuelo corresponde a un encinar adehesado, con un estrato arbustivo muy poco desarrollado y recomido, con un tapiz herbáceo con predominio de terófitos. En su interior hay roquedos que sirven de refugio a algunas especies vegetales más umbrófilas.

TABLA 3: Inventario florístico 2007-2009

|                                         | Cob  |                                           | Cob |
|-----------------------------------------|------|-------------------------------------------|-----|
| ESTRATO ARBÓREO                         | 25,0 | Juncus bufonius L.                        | +   |
| Quercus ilex L.                         |      | Lavandula stoechas L.                     | 0,5 |
| ESTRATO ARBUSTIVO                       | 0.8  | Legousia castellana (Lange) Samp.         | +   |
| Rosmarinus officinalis L.               |      | Leontodon taraxacoides (Vill.) Mérat      | +   |
| EST. SUBARBUSTIVO-HERBACEO              | -    | Logfia gallica (L.) Cosson & Germ.        | +   |
| Agrostis castellana Boiss. & Reuter     |      | Lotus parviflorus Desf.                   | +   |
| Agrostis pourretii Willd.               | -    | Melica ciliata L.                         | +   |
| Anagallis arvensis L.                   | +    | Moehringia pentandra Gay                  | +   |
| Andryala integrifolia L.                |      | Olea europaea L.                          | +   |
| Arrhenatherum album (Vahl) W.D. Clayt   |      | Ornithopus compressus L.                  | +   |
| Asparagus acutifolius L.                |      | Orobanche sp.                             | +   |
| Asphodelus aestivus Brot.               |      | Petrorhagia nanteuilii (Burnat) P.W. Ball | +   |
| Asterolinon linum-stellatum (L.) Duby   |      | Pinus pinea L.                            | +   |
| Astragalus sp.                          |      | Plantago bellardii All.                   | +   |
| Avena barbata Pott ex Link              | +    | Plantago lanceolata L.                    | +   |
| Bellardia trixago (L.) All.             | +    | Polycarpon tetraphyllum (L.) L.           | +   |
| Brachypodium distachyon (L.) Beauv.     | +    | Pyrus bourgaeana Decne                    | +   |
| Brassica barrelieri (L.) Janka          | +    | Quercus ilex L.                           | 1,0 |
| Briza maxima L.                         | +    | Rosmarinus officinalis L.                 | 0,5 |
| Briza minor L.                          | +    | Rumex acetosella L.                       | 0,2 |
| Bromus diandrus Roth                    | +    | Rumex bucephalophorus L.                  | +   |
| Bromus hordeaceus L.                    | +    | Sanguisorba minor Scop.                   | +   |
| Bromus madritensis L.                   | +    | Senecio jacobaea L.                       | +   |
| Bromus rigidus Roth                     | +    | Sherardia arvensis L.                     | +   |
| Bromus sterilis L.                      | +    | Silene gallica L.                         | +   |
| Calendula arvensis L.                   | +    | Silene scabriflora Brot.                  | +   |
| Campanula lusitanica L.                 | +    | Sisymbrium officinale (L.) Scop.          | +   |
| Capsella bursa-pastoris (L.) Medicus    | +    | Sonchus asper (L.) Hill                   | +   |
| Cardamine hirsuta L.                    | +    | Spergularia purpurea (Pers.) G. Don fil.  | +   |
| Carduus tenuiflorus Curtis              | +    | Taeniatherum caput-medusae (L.) Nevski    | +   |
| Carlina corymbosa L.                    | +    | Tamus communis L.                         | +   |
| Centaurea melitensis L.                 | +    | Thymus mastichina L.                      | 0,5 |
| Cerastium glomeratum Thuill.            |      | Tolpis barbata (L.) Gaertner              | +   |
| Cerastium pumilum Curtis                | +    | Torilis arvensis (Hudson) Link            | +   |
| Conopodium sp.                          | +    | Torilis nodosa (L.) Gaertner              | +   |
| Corynephorus fasciculatus Boiss. & Reut | +    | Trifolium angustifolium L.                | +   |
| Crucianella angustifolia L.             | +    | Trifolium arvense L.                      | +   |
| Cynosurus echinatus L.                  | +    | Trifolium bocconei Savi                   | +   |
| Dactylis glomerata L.                   | +    | Trifolium campestre Schreber              | +   |
| Echium plantagineum L.                  | +    | Trifolium cherleri L.                     | +   |
| Erodium cicutarium (L.) L'Hér.          | +    | Trifolium glomeratum L.                   | +   |
| Erodium moschatum (L.) L'Hér.           | +    | Trifolium stellatum L.                    | +   |
| Filago micropodioides Lange             | +    | Trifolium striatum L.                     | +   |

|                                   | Cob |                                 | Cob |
|-----------------------------------|-----|---------------------------------|-----|
| Filago pyramidata L.              | +   | Trifolium subterraneum L.       | +   |
| Galium parisiense L.              | +   | Trifolium tomentosum L.         | +   |
| Gaudinia fragilis (L.) Beauv.     | 0,8 | Urginea maritima (L.) Baker     | +   |
| Geranium purpureum Vill.          | +   | Urospermum picroides (L.) Scop. | +   |
| Hedypnois cretica (L.) DumCourset | +   | Vicia angustifolia L.           | +   |
| Herniaria lusitanica Chaudhri     | +   | Viola arvensis Murray           | +   |
| Holcus setiglumis Boiss. & Reuter | 0,4 | Vulpia ciliata Dumort.          | +   |
| Hordeum murinum L.                | +   | Tuberaria guttata (L.) Fourr.   | +   |
| Hypochoeris glabra L.             | +   | Xolantha plantaginea            | +   |
| Hypochoeris radicata L.           | +   |                                 |     |


Vegetación potencial: La parcela se encuentra en la serie 24 c, Serie mesomediterránea luso-extremadurense seco-subhúmeda silicícola de la encina (Quercus rotundifolia). Pyro bourgaeanae-Querceto rotundifoliae sigmetum.


#### 2.4. Caracterización forestal y dasométrica.

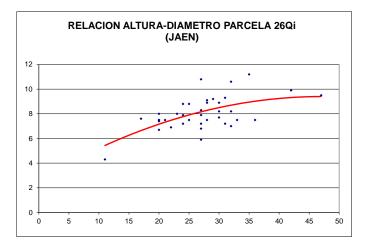

La parcela se sitúa en una masa monoespecífica de encina con 41-60 años de edad, cuyas características principales se resumen a continuación:

TABLA 4: Características dasométricas. Area de la parcela, número de pies en la parcela, densidad en pies/ha, Número de pies de la especie principal, número de pies de otras especies, número de pies muertos, edad media, diámetro medio, área basimétrica, diámetro medio cuadrático, altura media, altura dominante según criterio diámetro, existencias.

| Parcela | Area<br>ha | N<br>par | N/ha | Sp.p | Otras | Muerto | Edad<br>años | D med<br>(cm) | AB<br>m²/ha | D m c | Alt m<br>m | Alt do<br>m | Exist<br>m <sup>3</sup> cc |
|---------|------------|----------|------|------|-------|--------|--------------|---------------|-------------|-------|------------|-------------|----------------------------|
| 26 Qi   | 0,2500     | 28       | 112  | 28   | 0     | 2      | 41-60        | 28.21         | 7,50        | 29,21 | 8.30       | 8,55        | 4,00                       |







| CD          | N<br>parc | N ha | h    | Esb   | Exist parc | Exist<br>ha |
|-------------|-----------|------|------|-------|------------|-------------|
| 7,5 - 12,5  | 1         | 4    | 5,05 | 50,50 | 0,02       | 0,10        |
| 12,5 - 17,5 | 1         | 4    | 6,11 | 40,71 | 0,05       | 0,20        |
| 17,5 - 22,5 | 6         | 24   | 7,02 | 35,11 | 0,44       | 1,77        |
| 22,5 - 27,5 | 4         | 16   | 7,80 | 31,20 | 0,43       | 1,72        |
| 27,5 - 32,5 | 10        | 40   | 8,44 | 28,12 | 1,57       | 6,28        |
| 32,5 - 37,5 | 4         | 16   | 8,93 | 25,52 | 0,79       | 3,16        |
| 37,5 - 42,5 | 1         | 4    | 9,29 | 23,22 | 0,30       | 1,21        |
| 42,5 - 47,5 |           |      |      |       |            |             |
| 47,5 - 52,5 | 1         | 4    | 9,58 | 19,16 | 0,39       | 1,56        |
| 52,5 - 57,5 |           |      |      |       |            |             |
| 57,5 - 62,5 |           |      |      |       |            |             |
| 62,5 - 67,5 |           |      |      |       |            |             |
| > 62,5      |           |      |      |       |            |             |
| TOTAL       | 28        | 112  |      |       | 4,00       | 15,99       |

FIG 3: Distribución diamétrica de la parcela; distribución de alturas y comparación con las alturas media y dominante; relación de alturas-diámetros; frecuencias, alturas, esbelteces y existencias por clase diamétrica.

#### 3. Estado fitosanitario de la parcela.

#### 3.1. Defoliación y decoloración.

En la presente revisión la parcela presenta un buen estado fitosanitario, con una defoliación media del 20,89%, dentro por tanto del umbral inferior de la escala de daños ligeros, categoría en la que se han calificado casi todos los pies, en lo que supone un comportamiento muy estable del arbolado, con un incremento del parámetro de apenas unas décimas, inferior al umbral de cinco puntos porcentuales que supondrían una variación significativa en términos estadísticos de acuerdo con la normativa europea en materia de redes forestales, y siguiendo la tendencia ya apuntada en años anteriores.

Atendiendo a la serie histórica de datos se advierte la notable mejoría del arbolado a lo largo de los cinco últimos años, sobre todo por lo que se refiere a la distribución por clases de daño, habiéndose superado los malos resultados del bienio 2016-2017 muy condicionado por la sequía y las altas temperaturas estivales, que van asociadas a un comportamiento en diente de sierra en el que periodos de decaimiento se ven superados a medida que se dan mejorías en las condiciones climáticas.

En la línea de la mejoría encontrada se ha encontrado la decoloración, el segundo gran indicador de la situación fitosanitaria, presente en grado ligero en unos pocos ejemplares sueltos.

Los principales resultados pueden verse en el gráfico adjunto:

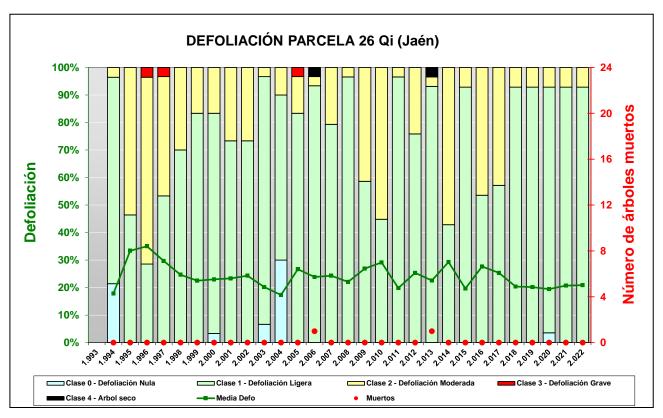



FIG 4: Histograma de defoliaciones por clases de daño y defoliación media de la parcela. Serie histórica.



FIG 5: Defoliación 20%, 30% y 45%

#### 3.2. Daños forestales.

Los principales agentes dañinos identificados se resumen en la siguiente tabla, indicándose el número de pies afectados, sus características dendrométricas, defoliación y decoloración asociadas y la diferencia con los valores medios de la parcela.

TABLA 5: Distribución de agentes dañinos en la parcela: pies afectados (Npar), Extensión de los daños en clases de porcentajes en grado de 1 a 7 (Extensión), pies afectados por ha (N/ha), porcentaje de pies afectados (%), defoliación y decoloración de los pies afectados por cada agente (Defo/Deco), diferencia de las defoliaciones y decoloraciones con las medias de la parcela (DifDefo y DifDeco, marcados en rojo si el valor de los pies afectados es superior al valor medio de la parcela y en verde en caso contrario), diámetro (Diam) y altura medias (Alt) de los pies afectados por cada agente y diferencias con los valores medios de la parcela (DifDiam y DifAlt).

|                             | N par | Extensión | N/ha | %      | Defo      | Deco | Dif<br>Defo | Dif<br>Deco | Diam  | Alt   | Dif<br>Diam | Dif<br>Alt |
|-----------------------------|-------|-----------|------|--------|-----------|------|-------------|-------------|-------|-------|-------------|------------|
| ANIMALES                    |       |           |      |        |           |      |             |             |       |       |             |            |
| Ciervo                      | 2     | 1,00      | 8    | 7,14   | 22,50     | 0,50 | 1,61        | 0,39        | 25,00 | 9,15  | -3,21       | 0,85       |
| Tronco                      | 2     | 1,00      | 8    | 7,14   |           | 0,50 | 1,61        | 0,39        | 25,00 | 9,15  | -3,21       | 0,85       |
| INSECTOS                    |       |           |      |        |           |      |             |             |       |       |             |            |
| Defoliadores                | 13    | 1,00      | 52   | 46,43  | 20,38     | 0,00 | -0,51       | -0,11       | 30,31 | 8,38  | 2,09        | 0,08       |
| Hojas                       | 13    | 1,00      | 52   | 46,43  | 20,38     | 0,00 | -0,51       | -0,11       | 30,31 | 8,38  | 2,09        | 0,08       |
| Perforadores                | 2     | 1,00      | 8    | 7,14   | 25,00     | 0,00 | 4,11        | -0,11       | 27,00 | 8,75  | -1,21       | 0,45       |
| Coroebus florentinus        | 2     | 1,00      | 8    | 7,14   | 25,00     | 0,00 | 4,11        | -0,11       | 27,00 | 8,75  | -1,21       | 0,45       |
| Brotes del año              | 1     | 1,00      | 4    | 3,57   | 25,00     | 0,00 | 4,11        | -0,11       | 22,00 | 6,90  | -6,21       | -1,40      |
| Ramillos <2 cm              | 1     | 1,00      | 4    | 3,57   | 25,00     | 0,00 | 4,11        | -0,11       | 32,00 | 10,60 | 3,79        | 2,30       |
| Minadores                   | 3     | 1,00      | 12   | 10,71  | 21,67     | 0,00 | 0,78        | -0,11       | 30,67 | 8,93  | 2,45        | 0,64       |
| Hojas                       | 3     | 1,00      | 12   | 10,71  | 21,67     | 0,00 | 0,78        | -0,11       | 30,67 | 8,93  | 2,45        | 0,64       |
| Form. Agallas               | 8     | 1,00      | 32   | 28,57  | 21,25     | 0,25 | 0,36        | 0,14        | 25,00 | 7,84  | -3,21       | -0,46      |
| Dryomyia lichtensteini      | 7     | 1,00      | 28   | 25,00  | 20,71     | 0,14 | -0,18       | 0,03        | 25,57 | 7,89  | -2,64       | -0,41      |
| Hojas                       | 7     | 1,00      | 28   | 25,00  | 20,71     | 0,14 | -0,18       | 0,03        | 25,57 | 7,89  | -2,64       | -0,41      |
| Plagiotrochus quercusilicis | 1     | 1,00      | 4    | 3,57   | 25,00     | 1,00 | 4,11        | 0,89        | 21,00 | 7,50  | -7,21       | -0,80      |
| Hojas                       | 1     | 1,00      | 4    | 3,57   | 25,00     | 1,00 | 4,11        | 0,89        | 21,00 | 7,50  | -7,21       | -0,80      |
| ENFERMEDADES                |       |           |      |        |           |      |             |             |       |       |             |            |
| Tizón                       | 19    | 1,00      | 76   | 67,86  |           | 0,11 | -0,63       | 0,00        | 30,05 | 8,55  | 1,84        | 0,26       |
| Botryosphaeria stevensii    | 19    | 1,00      | 76   | 67,86  | 20,26     | 0,11 | -0,63       | 0,00        | 30,05 | 8,55  | 1,84        | 0,26       |
| Brotes del año              | 18    | 1,00      | 72   | 64,29  | 20,28     | 0,11 | -0,61       | 0,00        | 29,00 | 8,50  | 0,79        | 0,20       |
| Ramillos <2 cm              | 1     | 1,00      | 4    | 3,57   | 20,00     | 0,00 | -0,89       | -0,11       | 49,00 | 9,50  | 20,79       | 1,20       |
| Hongos pudrición            | 5     | 1,20      | 20   | 17,86  |           | 0,00 | -2,89       | -0,11       | 25,60 | 7,56  | -2,61       | -0,74      |
| Tronco                      | 4     | 1,00      | 16   | 14,29  |           | 0,00 | -2,14       | -0,11       | 21,50 | 6,98  | -6,71       | -1,32      |
| Cuello raíz                 | 1     | 2,00      | 4    | 3,57   | 15,00     | 0,00 | -5,89       | -0,11       | 42,00 | 9,90  | 13,79       | 1,60       |
| AG.ABIÓTICOS                |       |           |      |        |           |      |             |             |       |       |             |            |
| Sequía                      | 28    | 4,07      | 112  | 100,00 |           | 0,11 | 0,00        | 0,00        | 28,21 | 8,30  | 0,00        | 0,00       |
| Hojas                       | 28    | 4,07      | 112  | 100,00 |           | 0,11 | 0,00        | 0,00        | 28,21 | 8,30  | 0,00        | 0,00       |
| Viento/Tornado              | 5     | 1,00      | 20   | 17,86  |           | 0,20 | 0,11        | 0,09        | 27,20 | 8,34  | -1,01       | 0,04       |
| Ramillos <2 cm              | 4     | 1,00      | 16   | 14,29  | 20,00     | 0,25 | -0,89       | 0,14        | 25,00 | 7,63  | -3,21       | -0,67      |
| Ramas 2-10 cm               | 1     | 1,00      | 4    | 3,57   | 25,00     | 0,00 | 4,11        | -0,11       | 36,00 | 11,20 | 7,79        | 2,90       |
| OTROS DAÑOS                 | _     | 4.00      |      |        | • • • • • | 0.50 | 0.00        | 0.00        | 24.70 | 0.50  | 2.00        | 0.40       |
| Falta luz                   | 2     | 1,00      | 8    |        | 20,00     |      | -0,89       |             |       | 8,70  | 3,29        | 0,40       |
| Ramillos <2 cm              | 2     | 1,00      | 8    |        | 20,00     |      |             |             | 31,50 |       | 3,29        |            |
| Eriophyes ilicis            | 4     | 1,00      | 16   | _      | 21,25     |      | 0,36        | 0,14        | 26,00 | 8,48  | -2,21       | 0,18       |
| Hojas                       | 4     | 1,00      | 16   | 14,29  | 21,25     | 0,25 | 0,36        | 0,14        | 26,00 | 8,48  | -2,21       | 0,18       |
| AG.DESCONOCIDO              | 2-    |           | 4.46 | 100.00 | 21.00     | 0.11 | 0.11        | 0.00        | 20.40 | 0.24  | 0.10        | 0.04       |
| Ag.desconocido              | 35    | 1,26      | 140  | 100,00 |           |      | 0,11        | _           | 28,40 | 8,31  | 0,19        |            |
| Brotes del año              | 6     | 1,00      | 24   | 21,43  |           |      | -0,89       | _           | 26,33 | 7,60  |             | -0,70      |
| Ramillos <2 cm              | 7     | 1,14      | 28   | 25,00  | 22,86     | 0,29 | 1,97        | 0,18        | 26,57 | 8,01  | -1,64       | -0,28      |

|               | N par | Extensión | N/ha | %     | Defo  | Deco | Dif<br>Defo | Dif<br>Deco | Diam  | Alt  | Dif<br>Diam | Dif<br>Alt |
|---------------|-------|-----------|------|-------|-------|------|-------------|-------------|-------|------|-------------|------------|
| Ramas 2-10 cm | 1     | 1,00      | 4    | 3,57  | 20,00 | 0,00 | -0,89       | -0,11       | 35,00 | 7,50 | 6,79        | -0,80      |
| Ramas >10 cm  | 1     | 1,00      | 4    | 3,57  | 20,00 | 0,00 | -0,89       | -0,11       | 33,00 | 9,30 | 4,79        | 1,00       |
| Tronco        | 20    | 1,40      | 80   | 71,43 | 20,75 | 0,10 | -0,14       | -0,01       | 29,10 | 8,61 | 0,89        | 0,31       |

En cuanto al conjunto de daños identificados y por lo que respecta a los insectos tal y como ya sucediera en anteriores revisiones, destaca en primer lugar la aparición de **defoliadores** tortrícidos en algo menos de la mitad del arbolado muestra, que se incrementan respecto a la revisión anterior, observándose las habituales mordeduras irregulares y festoneados a lo largo del margen foliar junto con alguna esqueletización de menor cuantía en la hoja, en la que el insecto no afecta a la nerviación de la hoja, que adquiere un aspecto reticulado; no asociados a un daño forestal de consideración.

Mención aparte cabe hacer de los insectos perforadores, que se reducen apreciablemente respecto a la revisión anterior. Se advierte la presencia salpicada de ramillos atabacados conformando los clásicos fogonazos de *Coroebus florentinus* tan habituales en los encinares españoles, causados por las galerías larvarias del insecto; y sobre pies que presentan una defoliación superior a la media de la parcela, lo que podría indicar un cierto efecto debilitador. Se encuentran también ampliamente representados, afectando a algo más de la tercera parte del arbolado, los agallícolas como *Dryomyia lischtensteini* de quien se ven las habituales agallas en el envés foliar debidas a la acción larvaria, en un nivel también inferior al habido en la pasada revisión y que resultan más visibles en las ramas más bajas de las encinas, junto con alguna agalla en el margen causada por el himenóptero *Plagiotrochus quercusilicis* sin mayor trascendencia. Se advierten también las típicas manchas de erinosis ocasionada por el eriófido *Eriophyes ilicis* (*Aceria ilicis*) con la habitual proliferación de pelos rojizos en el envés debidos a la hipertrofia del tomento foliar, no asociado a daños forestales de consideración y aumentan ligeramente respecto a los niveles observados en la revisión anterior.

Como viene siendo muy habitual en los encinares mediterráneos, se advierte también la presencia de *Botryosphaeria stevensii* (Anamorfo *Diplodia mutila*), de quien se han visto los habituales atabacamientos de ramillos terminales, que acaban dando lugar a pequeños golpes o glomérulos de hojas muertas salpicadas en posición distal, presentes en dos de cada tres encinas evaluadas –incrementándose respecto a la pasada revisión- y aparentemente concentrado en la sección inferior de la ramificación, debidos a la necrosis de los tejidos corticales de la sección afectada junto con la formación de pequeños chancros que terminan por anillar el ramillo afectado. El hongo es termófilo y se ve favorecido por la sequía, lo que contribuiría a ampliar su poder desestabilizador sobre todo en años con condiciones climáticas desfavorables, en los que se superpongan elevadas temperaturas junto con periodos de falta de agua. Mención aparte cabe hacer de las escobas de bruja causadas por *Taphrina kruchii* presentes en el cuadrante norte de la parcela. No se advierte un daño forestal de importancia asociado, aunque estrictamente la proliferación anómala de brotes y hojas suponga una disminución del aporte de agua y metabolitos hacia las zonas en crecimiento lo que conlleva un desequilibrio de los pies afectados. Al igual que en otras parcelas, en la presente revisión no se advierten daños en las bellotas por melazo, asociado a la bacteria *Brenneria quercina*, visibles en años previos y que pueden llegar a comprometer la regeneración de los rodales afectados al atrofiar la semilla.

Cabe destacar también la muerte o grave decaimiento de algún pie próximo, incluyendo alguno de los que sirven como perímetro de la parcela, debido presumiblemente a algún fenómeno de seca, aunque no ha llegado a afectar al arbolado muestra.

Con una precipitación inferior a los 10 mm en los tres meses previos a la revisión, se observan efectos de la **sequía** en todas las encinas evaluadas, que presentan acucharamientos o plegamientos de las hojas a lo largo del nervio central en una típica estrategia de reducción de la superficie foliar para disminuir

las pérdidas de agua por transpiración. Se ha visto también algunas ramillas rotas por efecto de alguna tormenta reciente, sin mayor trascendencia, ala afectar a cortas fracciones de copa.

Por último, y sin que se pueda determinar la causa con exactitud, se advierte, **puntisecado** de ramillas, alguna **tumoración** y **fendas longitudinales** en los troncos, debida quizá a oscilaciones térmicas noche-día.

El conjunto de **síntomas y signos** observados se resumen en la tabla adjunta.

TABLA 6: Distribución de síntomas y signos en la parcela: pies afectados (Npar), Extensión de los daños en clases de porcentajes en grado de 1 a 7 (Extensión), pies afectados por ha (N/ha), porcentaje de pies afectados (%), defoliación y decoloración de los pies afectados por cada agente (Defo/Deco), diferencia de las defoliaciones y decoloraciones con las medias de la parcela (DifDefo y DifDeco, marcados en rojo si el valor de los pies afectados es superior al valor medio de la parcela y en verde en caso contrario), diámetro (Diam) y altura medias (Alt) de los pies afectados por cada agente y diferencias con los valores medios de la parcela (DifDiam y DifAlt).

|                     | N par | Extensión | N/ha | %      | Defo  | Deco | Dif<br>Defo | Dif<br>Deco | Diam  | Alt   | Dif<br>Diam | Dif<br>Alt |
|---------------------|-------|-----------|------|--------|-------|------|-------------|-------------|-------|-------|-------------|------------|
| HOJAS/ACÍCULAS      |       |           |      |        |       |      |             |             |       |       |             |            |
| Hojas               | 56    | 2,54      | 224  | 100,00 | 20,89 | 0,11 | 0,00        | 0,00        | 28,21 | 8,30  | 0,00        | 0,00       |
| Comidos/perdidos    | 15    | 1,00      | 60   | 53,57  | 20,67 | 0,00 | -0,22       | -0,11       | 30,27 | 8,50  | 2,05        | 0,20       |
| Muescas             | 7     | 1,00      | 28   | 25,00  | 20,71 | 0,00 | -0,18       | -0,11       | 33,14 | 9,37  | 4,93        | 1,08       |
| Esqueletizadas      | 5     | 1,00      | 20   | 17,86  | 20,00 | 0,00 | -0,89       | -0,11       | 26,00 | 7,02  | -2,21       | -1,28      |
| Minadas             | 3     | 1,00      | 12   | 10,71  | 21,67 | 0,00 | 0,78        | -0,11       | 30,67 | 8,93  | 2,45        | 0,64       |
| Deformaciones       | 40    | 3,15      | 160  | 100,00 | 21,00 | 0,15 | 0,11        | 0,04        | 27,35 | 8,22  | -0,86       | -0,07      |
| Enrolladas          | 28    | 4,07      | 112  | 100,00 | 20,89 | 0,11 | 0,00        | 0,00        | 28,21 | 8,30  | 0,00        | 0,00       |
| Agallas             | 8     | 1,00      | 32   | 28,57  | 21,25 | 0,25 | 0,36        | 0,14        | 25,00 | 7,84  | -3,21       | -0,46      |
| Otras deformaciones | 4     | 1,00      | 16   | 14,29  | 21,25 | 0,25 | 0,36        | 0,14        | 26,00 | 8,48  | -2,21       | 0,18       |
| Signos insectos     | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 32,00 | 8,20  | 3,79        | -0,10      |
| Nidos               | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 32,00 | 8,20  | 3,79        | -0,10      |
| RAMAS/BROTES        |       |           |      |        |       |      |             |             |       |       |             |            |
| Brotes del año      | 25    | 1,00      | 100  | 89,29  | 20,40 | 0,08 | -0,49       | -0,03       | 28,08 | 8,22  | -0,13       | -0,08      |
| Muerto/moribundo    | 25    | 1,00      | 100  | 89,29  | 20,40 | 0,08 | -0,49       | -0,03       | 28,08 | 8,22  | -0,13       | -0,08      |
| Ramillos <2 cm      | 15    | 1,07      | 60   | 53,57  | 21,67 | 0,27 | 0,78        | 0,16        | 28,67 | 8,27  | 0,45        | -0,02      |
| Rotura              | 4     | 1,00      | 16   | 14,29  | 20,00 | 0,25 | -0,89       | 0,14        | 25,00 | 7,63  | -3,21       | -0,67      |
| Muerto/moribundo    | 11    | 1,09      | 44   | 39,29  | 22,27 | 0,27 | 1,38        | 0,16        | 30,00 | 8,51  | 1,79        | 0,21       |
| Ramas 2-10 cm       | 2     | 1,00      | 8    | 7,14   | 22,50 | 0,00 | 1,61        | -0,11       | 35,50 | 9,35  | 7,29        | 1,05       |
| Deformaciones       | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 35,00 | 7,50  | 6,79        | -0,80      |
| Rotura              | 1     | 1,00      | 4    | 3,57   | 25,00 | 0,00 | 4,11        | -0,11       | 36,00 | 11,20 | 7,79        | 2,90       |
| Ramas >10 cm        | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 33,00 | 9,30  | 4,79        | 1,00       |
| Deformaciones       | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 33,00 | 9,30  | 4,79        | 1,00       |
| Tumores             | 1     | 1,00      | 4    | 3,57   | 20,00 | 0,00 | -0,89       | -0,11       | 33,00 | 9,30  | 4,79        | 1,00       |
| TRONCO/C.RAÍZ       |       |           |      |        |       |      |             |             |       |       |             |            |
| Tronco              | 26    | 1,31      | 104  | 92,86  | 20,58 | 0,12 | -0,31       | 0,01        | 27,62 | 8,40  | -0,60       | 0,10       |
| Deformaciones       | 13    | 1,31      | 52   | 46,43  | 19,23 | 0,08 | -1,66       | -0,03       | 28,31 | 8,52  | 0,09        | 0,22       |
| Tumores             | 13    | 1,31      | 52   | 46,43  | 19,23 | 0,08 | -1,66       | -0,03       | 28,31 | 8,52  | 0,09        | 0,22       |
| Heridas             | 9     | 1,44      | 36   | 32,14  | 23,33 | 0,22 | 2,44        | 0,11        | 29,33 | 8,87  | 1,12        | 0,57       |
| Descortezamientos   | 8     | 1,50      | 32   | 28,57  | 23,13 | 0,25 | 2,24        | 0,14        | 28,50 | 8,58  | 0,29        | 0,28       |
| Otras heridas       | 1     | 1,00      | 4    | 3,57   | 25,00 | 0,00 | 4,11        | -0,11       | 36,00 | 11,20 | 7,79        | 2,90       |
| Pudriciones         | 4     | 1,00      | 16   | 14,29  | 18,75 | 0,00 | -2,14       | -0,11       | 21,50 | 6,98  | -6,71       | -1,32      |
|                     |       |           |      |        |       |      |             |             |       |       |             |            |
| Cuello raíz         | 1     | 2,00      | 4    | 3,57   | 15,00 | 0,00 | -5,89       | -0,11       | 42,00 | 9,90  | 13,79       | 1,60       |
| Pudriciones         | 1     | 2,00      | 4    | 3,57   | 15,00 | 0,00 | -5,89       | -0,11       | 42,00 | 9,90  | 13,79       | 1,60       |

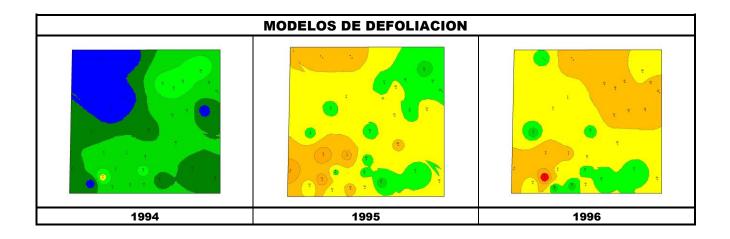
Por último, se presenta a continuación la relación entre agentes dañinos identificados y los distintos síntomas observados.

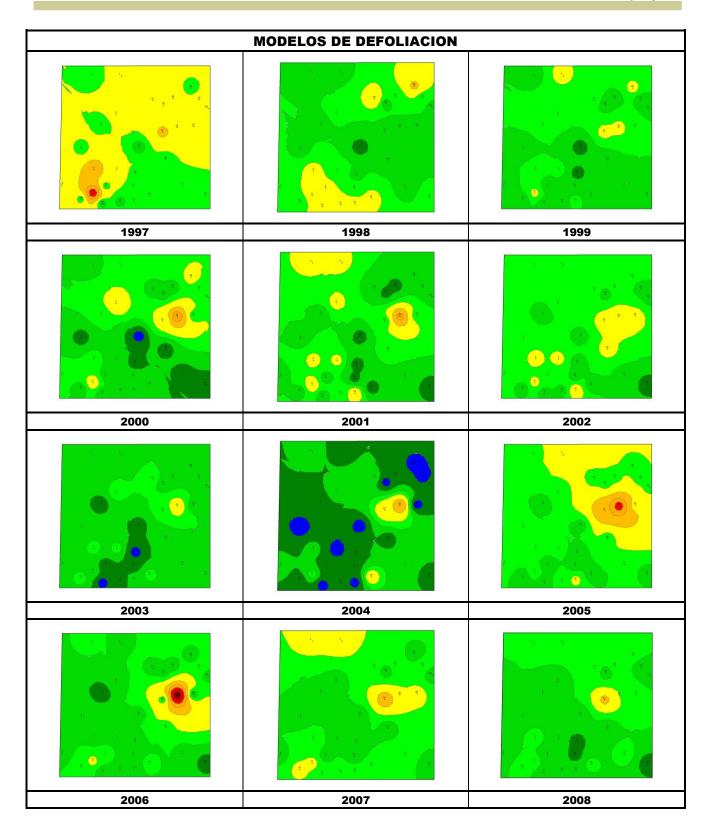
 TABLA 7: Relación entre agentes, síntomas y signos observados.

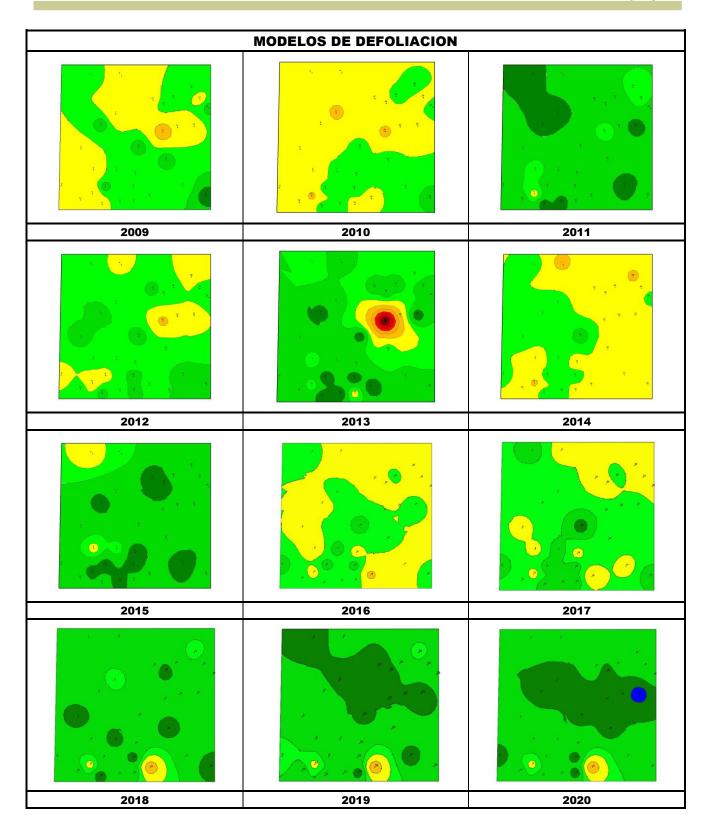
|                     | N     | Cie | rvo    | Defolia | dores  | Perfora | adores | Minad | lores  |
|---------------------|-------|-----|--------|---------|--------|---------|--------|-------|--------|
|                     | N par | n   | %      | n       | %      | n       | %      | n     | %      |
| HOJAS/ACÍCULAS      |       |     |        |         |        | Î       |        |       |        |
| Hojas               | 56    |     |        | 13      | 100,00 |         |        | 3     | 100,00 |
| Comidos/perdidos    | 15    |     |        | 12      | 92,31  |         |        | 3     | 100,00 |
| Muescas             | 7     |     |        | 7       | 53,85  |         |        |       | ·      |
| Esqueletizadas      | 5     |     |        | 5       | 38,46  |         |        |       |        |
| Minadas             | 3     |     |        |         |        |         |        | 3     | 100,00 |
| Deformaciones       | 40    |     |        |         |        |         |        |       | ·      |
| Enrolladas          | 28    |     |        |         |        |         |        |       |        |
| Agallas             | 8     |     |        |         |        |         |        |       |        |
| Otras deformaciones | 4     |     |        |         |        |         |        |       |        |
| Signos insectos     | 1     |     |        | 1       | 7,69   |         |        |       |        |
| Nidos               | 1     |     |        | 1       | 7,69   |         |        |       |        |
| RAMAS/BROTES        |       |     |        |         |        |         |        |       |        |
| Brotes del año      | 25    |     |        |         |        | 1       | 50,00  |       |        |
| Muerto/moribundo    | 25    |     |        |         |        | 1       | 50,00  |       |        |
| Ramillos <2 cm      | 15    |     |        |         |        | 1       | 50,00  |       |        |
| Rotura              | 4     |     |        |         |        |         |        |       |        |
| Muerto/moribundo    | 11    |     |        |         |        | 1       | 50,00  |       |        |
| Ramas 2-10 cm       | 2     |     |        |         |        |         |        |       |        |
| Deformaciones       | 1     |     |        |         |        |         |        |       |        |
| Tumores             | 1     |     |        |         |        |         |        |       |        |
| Rotura              | 1     |     |        |         |        |         |        |       |        |
| Ramas >10 cm        | 1     |     |        |         |        |         |        |       |        |
| Deformaciones       | 1     |     |        |         |        |         |        |       |        |
| Tumores             | 1     |     |        |         |        |         |        |       |        |
| TRONCO/C.RAÍZ       |       |     |        |         |        |         |        |       |        |
| Tronco              | 26    | 2   | 100,00 |         |        |         |        |       |        |
| Deformaciones       | 13    |     |        |         |        |         |        |       |        |
| Tumores             | 13    |     |        |         |        |         |        |       |        |
| Heridas             | 9     | 2   | 100,00 |         |        |         |        |       |        |
| Descortezamientos   | 8     | 2   | 100,00 |         |        |         |        |       |        |
| Otras heridas       | 1     |     |        |         |        |         |        |       |        |
| Pudriciones         | 4     |     |        |         |        |         |        |       |        |
| Cuello raíz         | 1     |     |        |         |        |         |        |       |        |
| Pudriciones         | 1     |     |        |         |        |         |        |       |        |

|                  | N par  | Form. | Agallas | Tiz | zón | Hongos p | oudrición | Seq | uía    |
|------------------|--------|-------|---------|-----|-----|----------|-----------|-----|--------|
|                  | 14 pai | n     | %       | n   | %   | n        | %         | n   | %      |
| HOJAS/ACÍCULAS   |        |       |         |     |     |          |           |     |        |
| Hojas            | 56     | 8     | 100,00  |     |     |          |           | 28  | 100,00 |
| Comidos/perdidos | 15     |       |         |     |     |          |           |     |        |
| Muescas          | 7      |       |         |     |     |          |           |     |        |

|                     | N par | Form. | Agallas | Tiz | ón    | Hongos 1 | oudrición | Seq | uía    |
|---------------------|-------|-------|---------|-----|-------|----------|-----------|-----|--------|
|                     | N par | n     | %       | n   | %     | n        | %         | n   | %      |
| Esqueletizadas      | 5     |       |         |     |       |          |           |     |        |
| Minadas             | 3     |       |         |     |       |          |           |     |        |
| Deformaciones       | 40    | 8     | 100,00  |     |       |          |           | 28  | 100,00 |
| Enrolladas          | 28    |       |         |     |       |          |           | 28  | 100,00 |
| Agallas             | 8     | 8     | 100,00  |     |       |          |           |     |        |
| Otras deformaciones | 4     |       | ·       |     |       |          |           |     |        |
| Signos insectos     | 1     |       |         |     |       |          |           |     |        |
| Nidos               | 1     |       |         |     |       |          |           |     |        |
| RAMAS/BROTES        |       |       |         |     |       |          |           |     |        |
| Brotes del año      | 25    |       |         | 18  | 94,74 |          |           |     |        |
| Muerto/moribundo    | 25    |       |         | 18  | 94,74 |          |           |     |        |
| Ramillos <2 cm      | 15    |       |         | 1   | 5,26  |          |           |     |        |
| Rotura              | 4     |       |         |     | -     |          |           |     |        |
| Muerto/moribundo    | 11    |       |         | 1   | 5,26  |          |           |     |        |
| Ramas 2-10 cm       | 2     |       |         |     |       |          |           |     |        |
| Deformaciones       | 1     |       |         |     |       |          |           |     |        |
| Tumores             | 1     |       |         |     |       |          |           |     |        |
| Rotura              | 1     |       |         |     |       |          |           |     |        |
| Ramas >10 cm        | 1     |       |         |     |       |          |           |     |        |
| Deformaciones       | 1     |       |         |     |       |          |           |     |        |
| Tumores             | 1     |       |         |     |       |          |           |     |        |
| TRONCO/C.RAÍZ       |       |       |         |     |       |          |           |     |        |
| Tronco              | 26    |       |         |     |       | 4        | 80,00     |     |        |
| Deformaciones       | 13    |       |         |     |       |          | ŕ         |     |        |
| Tumores             | 13    |       |         |     |       |          |           |     |        |
| Heridas             | 9     |       |         |     |       |          |           |     |        |
| Descortezamientos   | 8     |       |         |     |       |          |           |     |        |
| Otras heridas       | 1     |       |         |     |       |          |           |     |        |
| Pudriciones         | 4     |       |         |     |       | 4        | 80,00     |     |        |
| Cuello raíz         | 1     |       |         |     |       | 1        | 20,00     |     |        |
| Pudriciones         | 1     |       |         |     |       | 1        | 20,00     |     |        |


|                     | N par | Viento/ | Гornado | Falta | a luz | Eriophy | es ilicis | Ag.desc | onocido |
|---------------------|-------|---------|---------|-------|-------|---------|-----------|---------|---------|
|                     | N pai | n       | %       | n     | %     | n       | %         | n       | %       |
| HOJAS/ACÍCULAS      |       |         |         |       |       |         |           |         |         |
| Hojas               | 56    |         |         |       |       | 4       | 100,00    |         |         |
| Comidos/perdidos    | 15    |         |         |       |       |         |           |         |         |
| Muescas             | 7     |         |         |       |       |         |           |         |         |
| Esqueletizadas      | 5     |         |         |       |       |         |           |         |         |
| Minadas             | 3     |         |         |       |       |         |           |         |         |
| Deformaciones       | 40    |         |         |       |       | 4       | 100,00    |         |         |
| Enrolladas          | 28    |         |         |       |       |         |           |         |         |
| Agallas             | 8     |         |         |       |       |         |           |         |         |
| Otras deformaciones | 4     |         |         |       |       | 4       | 100,00    |         |         |
| Signos insectos     | 1     |         |         |       |       |         |           |         |         |
| Nidos               | 1     |         |         |       |       |         |           |         |         |
| RAMAS/BROTES        |       |         |         |       |       |         |           |         |         |
| Brotes del año      | 25    |         |         |       |       |         |           | 6       | 17,14   |
| Muerto/moribundo    | 25    |         |         |       |       |         |           | 6       | 17,14   |





|                   |       | Viento/T | ornado | Falta | luz    | Erionh | yes ilicis | Ag.desco | nocido |
|-------------------|-------|----------|--------|-------|--------|--------|------------|----------|--------|
|                   | N par | n        | %      | n     | %      | n      | %          | n        | %      |
| Ramillos <2 cm    | 15    | 4        | 80,00  | 2     | 100,00 |        |            | 7        | 20,00  |
| Rotura            | 4     | 4        | 80,00  |       |        |        |            |          |        |
| Muerto/moribundo  | 11    |          |        | 2     | 100,00 |        |            | 7        | 20,00  |
| Ramas 2-10 cm     | 2     | 1        | 20,00  |       |        |        |            | 1        | 2,86   |
| Deformaciones     | 1     |          |        |       |        |        |            | 1        | 2,86   |
| Tumores           | 1     |          |        |       |        |        |            | 1        | 2,86   |
| Rotura            | 1     | 1        | 20,00  |       |        |        |            |          |        |
| Ramas >10 cm      | 1     |          |        |       |        |        |            | 1        | 2,86   |
| Deformaciones     | 1     |          |        |       |        |        |            | 1        | 2,86   |
| Tumores           | 1     |          |        |       |        |        |            | 1        | 2,86   |
| TRONCO/C.RAÍZ     |       |          |        |       |        |        |            |          |        |
| Tronco            | 26    |          |        |       |        |        |            | 20       | 57,14  |
| Deformaciones     | 13    |          |        |       |        |        |            | 13       | 37,14  |
| Tumores           | 13    |          |        |       |        |        |            | 13       | 37,14  |
| Heridas           | 9     |          |        |       |        |        |            | 7        | 20,00  |
| Descortezamientos | 8     |          |        |       |        |        |            | 6        | 17,14  |
| Otras heridas     | 1     |          |        |       |        |        |            | 1        | 2,86   |
| Pudriciones       | 4     | _        |        | _     | _      |        |            |          |        |
| Cuello raíz       | 1     |          | _      |       |        |        |            |          |        |
| Pudriciones       | 1     |          |        |       |        |        |            |          |        |

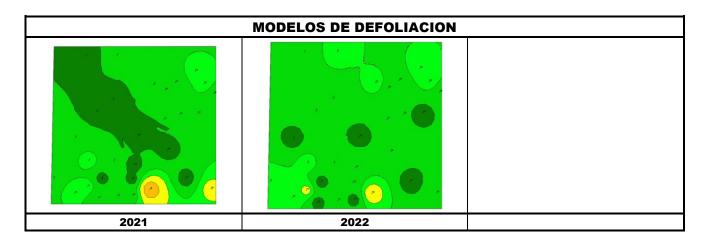



FIG 6: Deformaciones en hojas de encina y defoliaciones fuertes en piruétanos acompañantes por sequía. Brote atabacado por *Botryosphaeria stevensii*. Daños por ungulados en troncos.









Los dos principales parámetros para evaluar el estado de salud en masas forestales son la defoliación y decoloración

**DEFOLIACION:** se entiende por defoliación la pérdida de hojas/acículas que sufre un árbol en la parte de su copa evaluable, es decir, eliminando del proceso de estima la copa muerta (ramas y ramillos claramente muertos) y la parte de la copa con ramas secas por poda natural o competencia.

De acuerdo con la normativa europea, se consideran las siguientes clases de defoliación o daño:

- ✓ Arboles sin daño: defoliación 0-10%
- ✓ Ligeramente dañados: defoliación 15-25%
- ✓ Moderadamente dañados: defoliación 30-60%
- Gravemente dañados: defoliación 65-95%
- Arboles muertos: defoliación 100%

**DECOLORACION:** se entiende por decoloración, la aparición de coloraciones anormales en la totalidad del follaje o en una parte apreciable del mismo, utilizándose en su evaluación un criterio subjetivo que implica el conocimiento del medio forestal correspondiente por parte del evaluador.

De acuerdo con la normativa europea, se consideran las siguientes clases de decoloración:

- Clase 0: decoloración nula
- ✓ Clase 1: decoloración ligera
- ✓ Clase 2: decoloración moderada
- ✓ Clase 3: decoloración grave



#### 4. Instrumentación.

Para el seguimiento intensivo y continuo de la parcela están instalados los siguientes equipos de medición:

TABLA 8: Equipos de medición instalados en la parcela. Periodicidad quincenal 1997-2011; Mensual desde 2012

| Variable                   | Equipo                 | Parcela<br>Interior | Parcela<br>Exterior | Instalación | Periodicidad      |
|----------------------------|------------------------|---------------------|---------------------|-------------|-------------------|
|                            | Torre meteorológica    |                     | 1                   |             |                   |
|                            | Placa solar            |                     | 1                   |             |                   |
|                            | Meteodata              |                     | 1                   |             |                   |
|                            | Anemómetro             |                     | 1                   |             |                   |
| Meteorología               | Veleta                 |                     | 1                   | 1997        | Quincenal/Mensual |
|                            | Piranómetro            |                     | 1                   |             |                   |
|                            | Termómetro             |                     | 1                   |             |                   |
|                            | Sonda Humedad          |                     | 1                   |             |                   |
|                            | Pluviómetro            |                     | 1                   |             |                   |
| Des simites sides          | Acumuladores           |                     | 4                   |             |                   |
| Precipitación incidente    | Pluviómetro            |                     | 1                   | 1997        | Quincenal/Mensual |
| incidente                  | Captador nieve         |                     | -                   |             |                   |
|                            | Acumuladores           | 6                   |                     |             |                   |
| Trascolación               | Pluviómetro            | 1                   |                     | 1997        | Quincenal/Mensual |
|                            | Captador nieve         | -                   |                     |             |                   |
| Desfronde                  | Captadores desfronde   | 4                   |                     | 1999        | Quincenal/Mensual |
| Humedad/Temp.<br>del suelo | Sonda de humedad       | 16                  |                     | 2009-2014   | Quincenal/Mensual |
| Inmisión                   | Dosímetros pasivos     |                     | 12                  | 2000        | Quincenal/Mensual |
| Crecimiento                | Dialdendro en continuo | 15                  |                     | 1999        | Quincenal/Mensual |
| Fenología                  | Árboles de seguimiento | 20                  |                     | 1998        | Quincenal/Mensual |



FIG 7 : Parcela exterior. Instrumentación y acumuladores. Parcela interior. Vista general, acumuladores, pluviómetro y captador de desfronde.

### 5. Deposición atmosférica.

La deposición atmosférica es un conjunto de procesos que conducen al depósito de materiales ajenos (a través de hidrometeoros, aerosoles o movimientos de gases) sobre la superficie descubierta del suelo o sobre la superficie exterior de árboles y plantas (troncos, ramas y hojas). La deposición depende de la concentración de contaminantes en una estación y momento determinados, lo que a su vez es función de la situación y actividad de las fuentes de emisión (grandes núcleos urbanos o industrias) así como de las condiciones atmosféricas, que determinan no sólo el movimiento de los contaminantes sino la reactividad entre los mismos.

La deposición atmosférica total consta de tres componentes:

- ✓ *Deposición seca:* depósito directo de los contaminantes sobre la superficie del suelo, el agua y la vegetación. Es el tipo de deposición más abundante en las zonas próximas a los focos de emisión.
- ✓ *Deposición húmeda:* depósito arrastrado hacia el ecosistema por la lluvia o la nieve. Previa unión de los contaminantes a las nubes o gotas de precipitación. Es el tipo de deposición más abundante en las zonas alejadas de los focos de emisión.
- ✓ **Deposición por nubes, niebla y oculta:** la vegetación intercepta directamente el agua y los contaminantes de las nubes, niebla, rocío y escarcha.

Para desarrollar un programa de seguimiento de los efectos de la contaminación atmosférica sobre la salud de los bosques, uno de los objetivos principales del programa, es necesario disponer de una estimación de la cantidad de contaminantes que entran periódicamente por unidad de superficie. Como sistema de medición más económico y eficaz se ha desarrollado el **método de trascolación**, empleado en todo el sistema ICP-Forests, que permite la estimación de las deposiciones total y seca, el cálculo de la deposición húmeda y la caracterización de los procesos de interacción entre los contaminantes que tienen lugar dentro del arbolado.

Para caracterizar la deposición se toman como vías de entrada al ecosistema:

- ✓ Precipitación en campo abierto: denominada también precipitación incidente o bulk deposition, que llega al suelo directamente desde el cielo, sin atravesar el dosel arbóreo y que se corresponde con la deposición húmeda
- ✓ *Precipitación bajo dosel arbóreo:* denominada también trascolación o *throughfall* en la que se recoge el agua que llega al suelo tras atravesar el follaje de la masa forestal, tras mojar la superficie de las copas e interaccionar con ellas, arrastrando parte de la deposición seca previamente caída, así como la precipitación húmeda.

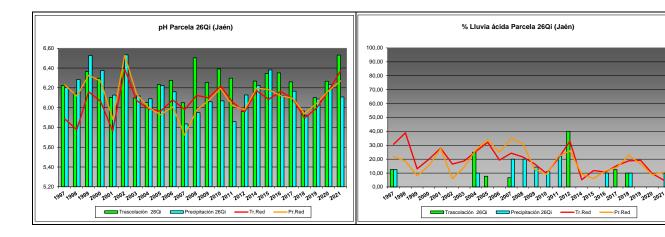
La toma de muestras se hace en una batería de colectores normalizados situados a campo abierto y bajo cubierta arbórea y se analizan en una serie de laboratorios de referencia convenientemente intercalibrados entre sí, a través de un exhaustivo sistema de control y aseguramiento de calidad, de forma que resulten intercomparables y coherentes entre sí los resultados obtenidos en los países integrantes del programa. Para el cálculo de la deposición hay que tener en cuenta tanto la cantidad de precipitación al ecosistema como la concentración de los diferentes solutos en la misma.

Como variables de medición de la deposición, el manual considera los siguientes parámetros:

TABLA 9: parámetros descriptores de la deposición atmosférica en los ecosistemas forestales del Programa ICP-Forests.

| Variable                               | Descripción                                                                                                                                                 | Valores de<br>referencia<br>RTSAP (*) |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| pН                                     | Medida de la acidez o basicidad. Se considera lluvia ácida con valores ≤ 5,65.                                                                              | 6,5-9,5                               |
| Conductividad                          | Índice de la presencia general de solutos en el agua.                                                                                                       | ≤2.500μS/cm                           |
| Calcio                                 | Elementos que se encuentran en el agua de lluvia debido fundamentalmente a                                                                                  | n.d                                   |
| Magnesio                               | su origen terrígeno, al formar parte de la mayoría de los suelos, especialmente en zonas de terreno calizo.                                                 | n.d                                   |
| Potasio                                |                                                                                                                                                             | n.d                                   |
| Sodio                                  | Elementos de origen marino, dependiendo su presencia de la distancia a la                                                                                   | 200 mg/l                              |
| Cloro                                  | línea de costa. Papel tóxico en la vegetación                                                                                                               | 250 mg/l                              |
| Amonio<br>(nitrógeno en<br>forma de)   | Procede de emisiones contaminantes a la atmósfera fundamentalmente de actividades agrícolas o ganaderas. Papel en la acidificación de los suelos.           | 0,50 mg/l                             |
| Nitratos<br>(nitrógeno en<br>forma de) | Producidos por la actividad industrial, doméstica y de transporte, ligados a procesos de combustión y responsables de la acidificación de la deposición que | 50 mg/l                               |
| Sulfatos (azufre<br>en forma de)       | llega a los ecosistemas forestales. Papel precursor (N) en la formación de ozono, contaminante secundario en forma de aerosol.                              | 250 mg/l                              |
| Alcalinidad                            | Capacidad para neutralizar los ácidos disueltos                                                                                                             |                                       |
| Nitrógeno total                        | Nitrógeno total disuelto presente en la deposición                                                                                                          |                                       |
| Carbono<br>orgánico disuelto           | Carbono presente en la muestra procedente de materia orgánica                                                                                               |                                       |
| Aluminio                               |                                                                                                                                                             | 0,2 mg/l                              |
| Manganeso                              | Metales pesados                                                                                                                                             | 0,05 mg/l                             |
| Hierro                                 |                                                                                                                                                             | 0,2 mg/l                              |

(\*)RTSAP: Reglamento Técnico-Sanitario de Aguas Potables.


Se caracteriza a continuación la deposición atmosférica en la parcela 26Qi, pasando revista a la evolución de los distintos parámetros a lo largo de la series histórica estudiada, haciendo la salvedad de que se trata de años completos, a excepción de los años 1997 (mayo-diciembre); 2012 (enero-julio) y 2014 (abrildiciembre), por lo que caben ciertas anomalías.

De cada parámetro se da el comportamiento del parámetro, la diferencia existente entre trascolación (bajo cubierta arbórea) y precipitación incidente (a campo abierto), lo que da idea tanto del papel del arbolado como sumidero como de la incidencia de la deposición seca, así como la distribución por trimestres de cada deposición, con objeto de caracterizar una posible tendencia temporal en el aporte de polutentes al ecosistema.

# 5.1. pH.

TABLA 10: Caracterización pH. Media anual ponderada por volumen (en rojo valores anuales < 5,65), porcentaje de muestreos en los que se ha obtenido pH < 5,65 (lluvia ácida), precipitación anual y media de la Red

|       | T             | rascolación (Ti     | r)                | Precip        | itación inciden     | te (Pi)           | Media | a Red |
|-------|---------------|---------------------|-------------------|---------------|---------------------|-------------------|-------|-------|
| Año   | Media<br>pond | Lluvia<br>ácida (%) | Precipit.<br>(mm) | Media<br>pond | Lluvia<br>ácida (%) | Precipit.<br>(mm) | Trasc | P.inc |
| 1997  | 6,22          | 12,50               | 411               | 6,20          | 12,50               | 569               | 5,89  | 6,23  |
| 1998  | 6,15          | 0,00                | 419               | 6,29          | 0,00                | 573               | 5,78  | 6,12  |
| 1999  | 6,36          | 0,00                | 457               | 6,53          | 0,00                | 575               | 6,16  | 6,33  |
| 2000  | 6,30          | 0,00                | 653               | 6,37          | 0,00                | 805               | 6,06  | 6,27  |
| 2001  | 6,10          | 0,00                | 863               | 6,13          | 0,00                | 967               | 5,76  | 5,88  |
| 2002  | 6,39          | 0,00                | 691               | 6,53          | 0,00                | 736               | 6,39  | 6,53  |
| 2003  | 6,10          | 0,00                | 756               | 6,12          | 0,00                | 850               | 6,07  | 6,14  |
| 2004  | 6,05          | 25,00               | 708               | 6,09          | 10,00               | 595               | 5,99  | 6,00  |
| 2005  | 6,23          | 7,69                | 269               | 6,22          | 0,00                | 305               | 5,96  | 5,93  |
| 2006  | 6,28          | 0,00                | 609               | 6,16          | 0,00                | 693               | 6,08  | 6,01  |
| 2007  | 6,05          | 6,67                | 524               | 5,84          | 20,00               | 594               | 5,98  | 5,72  |
| 2008  | 6,50          | 0,00                | 593               | 5,95          | 20,00               | 725               | 6,12  | 5,97  |
| 2009  | 6,25          | 0,00                | 449               | 6,06          | 14,29               | 497               | 6,10  | 6,07  |
| 2010  | 6,39          | 0,00                | 979               | 6,07          | 11,11               | 984               | 6,22  | 6,19  |
| 2011  | 6,30          | 0,00                | 894               | 5,86          | 22,22               | 630               | 6,06  | 6,02  |
| 2012  | 5,96          | 40,00               | 184               | 6,13          | 0,00                | 187               | 5,96  | 5,98  |
| 2014  | 6,27          | 0,00                | 364               | 6,22          | 0,00                | 358               | 6,17  | 6,20  |
| 2015  | 6,34          | 0,00                | 426               | 6,38          | 0,00                | 397               | 6,08  | 6,18  |
| 2016  | 6,35          | 0,00                | 851               | 6,12          | 10,00               | 890               | 6,16  | 6,12  |
| 2017  | 6,26          | 12,50               | 421               | 6,17          | 0,00                | 443               | 6,09  | 6,10  |
| 2018  | 5,97          | 10,00               | 673               | 5,92          | 10,00               | 678               | 5,89  | 5,94  |
| 2019  | 6,10          | 0,00                | 500               | 6,09          | 0,00                | 525               | 5,99  | 6,04  |
| 2020  | 6,27          | 0,00                | 675               | 6,23          | 0,00                | 634               | 6,17  | 6,17  |
| 2021  | 6,53          | 0,00                | 755               | 6,11          | 10,00               | 736               | 6,37  | 6,27  |
| Media | 6,24          | 4,77                | 588               | 6,16          | 5,84                | 623               | 6,06  | 6,10  |





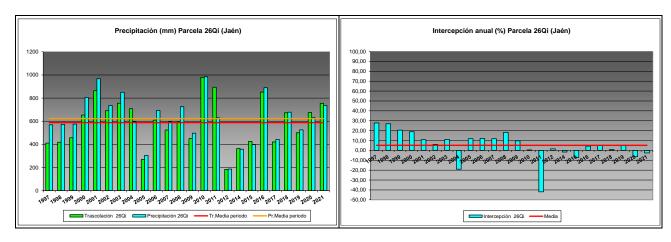



FIG 8: Variación temporal de pH, porcentaje de lluvia ácida, precipitación e intercepción (parte de precipitación retenida por follaje)

#### 5.2. Conductividad (µS/cm).

TABLA 11: Caracterización Conductividad. Media anual ponderada por volumen, precipitación anual y media de la Red

|       | T     | rascolación (T | r)        | Precip | itación inciden | te (Pi)   | Media | a Red |
|-------|-------|----------------|-----------|--------|-----------------|-----------|-------|-------|
| Año   | Media | Deposición     | Precipit. | Media  | Deposición      | Precipit. | Tuess | D :   |
|       | pond  | (kg/ha)        | (mm)      | pond   | (kg/ha)         | (mm)      | Trasc | P.inc |
| 1997  | 14,92 |                | 411       | 9,56   |                 | 569       | 25,52 | 22,05 |
| 1998  | 24,40 |                | 419       | 13,88  |                 | 573       | 29,37 | 22,53 |
| 1999  | 32,29 |                | 457       | 16,64  |                 | 575       | 33,18 | 19,89 |
| 2000  | 24,82 |                | 653       | 17,29  |                 | 805       | 35,34 | 22,06 |
| 2001  | 19,85 |                | 863       | 14,11  |                 | 967       | 27,99 | 15,78 |
| 2002  | 37,40 |                | 691       | 26,61  |                 | 736       | 48,98 | 30,11 |
| 2003  | 26,87 |                | 756       | 24,50  |                 | 850       | 45,96 | 25,07 |
| 2004  | 21,58 |                | 708       | 28,89  |                 | 595       | 62,42 | 37,00 |
| 2005  | 40,85 |                | 269       | 29,76  |                 | 305       | 65,42 | 30,19 |
| 2006  | 32,83 |                | 609       | 22,86  |                 | 693       | 61,52 | 28,60 |
| 2007  | 32,04 |                | 524       | 23,49  |                 | 594       | 49,85 | 28,88 |
| 2008  | 37,85 |                | 593       | 25,54  |                 | 725       | 46,65 | 22,88 |
| 2009  | 37,13 |                | 449       | 15,84  |                 | 497       | 49,43 | 20,10 |
| 2010  | 20,01 |                | 979       | 11,74  |                 | 984       | 44,44 | 15,09 |
| 2011  | 23,66 |                | 894       | 10,84  |                 | 630       | 51,36 | 19,04 |
| 2012  | 37,26 |                | 184       | 9,13   |                 | 189       | 53,38 | 20,50 |
| 2014  | 27,54 |                | 364       | 19,06  |                 | 358       | 33,76 | 15,23 |
| 2015  | 36,24 |                | 426       | 13,91  |                 | 397       | 45,28 | 18,25 |
| 2016  | 21,37 |                | 851       | 9,47   |                 | 890       | 47,39 | 15,22 |
| 2017  | 25,21 |                | 421       | 14,63  |                 | 443       | 56,13 | 18,87 |
| 2018  | 26,95 |                | 673       | 14,74  |                 | 678       | 38,75 | 16,20 |
| 2019  | 31,36 |                | 500       | 28,77  |                 | 525       | 74,16 | 28,49 |
| 2020  | 26,98 |                | 675       | 14,82  |                 | 634       | 46,43 | 20,40 |
| 2021  | 25,95 |                | 755       | 14,54  |                 | 736       | 40,51 | 22,14 |
| Media | 28,56 |                | 588       | 17,94  |                 | 623       | 46,38 | 22,27 |

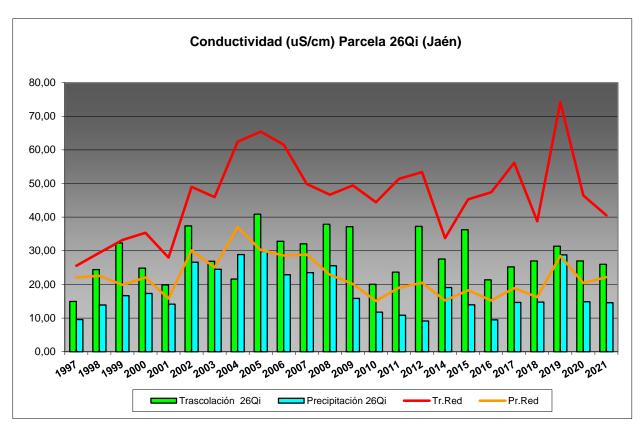



FIG 9: Variación temporal de la conductividad.

#### 5.3. Potasio.

TABLA 12: Caracterización Potasio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolaciónprecipitación incidente y media de la Red

|      | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año  | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|      | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 1997 | 1,77   | 7,27         | 411       | 0,44     | 2,52         | 569       | 4,75    | 7,33    | 5,18    |
| 1998 | 4,77   | 19,97        | 419       | 1,04     | 5,94         | 573       | 14,03   | 19,45   | 13,28   |
| 1999 | 5,20   | 23,77        | 457       | 1,70     | 9,76         | 575       | 14,01   | 17,99   | 11,86   |
| 2000 | 2,65   | 17,32        | 653       | 1,41     | 11,34        | 805       | 5,97    | 22,33   | 15,28   |
| 2001 | 2,56   | 22,11        | 863       | 1,71     | 16,56        | 967       | 5,55    | 16,00   | 9,92    |
| 2002 | 3,33   | 23,04        | 691       | 0,91     | 6,71         | 736       | 16,33   | 19,36   | 7,73    |
| 2003 | 1,82   | 13,78        | 756       | 0,29     | 2,43         | 850       | 11,36   | 12,93   | 3,83    |
| 2004 | 1,62   | 11,49        | 708       | 0,70     | 4,14         | 595       | 7,35    | 16,14   | 4,88    |
| 2005 | 3,93   | 10,58        | 269       | 1,98     | 6,04         | 305       | 4,54    | 12,47   | 5,15    |
| 2006 | 2,95   | 17,98        | 609       | 1,30     | 8,98         | 693       | 9,00    | 19,14   | 9,86    |
| 2007 | 4,50   | 23,58        | 524       | 1,33     | 7,87         | 594       | 15,71   | 20,44   | 7,92    |
| 2008 | 5,28   | 31,33        | 593       | 1,08     | 7,81         | 725       | 23,52   | 22,97   | 6,57    |
| 2009 | 5,63   | 25,30        | 449       | 0,61     | 3,01         | 497       | 22,29   | 18,05   | 4,28    |
| 2010 | 2,08   | 20,39        | 979       | 0,44     | 4,30         | 984       | 16,09   | 21,96   | 3,59    |
| 2011 | 1,19   | 10,68        | 894       | 1,05     | 6,62         | 630       | 4,06    | 18,92   | 5,75    |
| 2012 | 0,34   | 0,62         | 184       | 0,12     | 0,23         | 189       | 0,39    | 2,99    | 0,92    |
| 2014 | 3,25   | 11,84        | 364       | 0,73     | 2,62         | 358       | 9,22    | 11,97   | 1,60    |
| 2015 | 5,77   | 24,55        | 426       | 0,38     | 1,49         | 397       | 23,06   | 18,33   | 4,20    |
| 2016 | 2,61   | 22,25        | 851       | 0,28     | 2,50         | 890       | 19,74   | 19,15   | 2,17    |

|       | Trascolación (Tr) |                   |                | Precipit | ación incide      | ente (Pi) | Difer.           | Media            | a Red            |
|-------|-------------------|-------------------|----------------|----------|-------------------|-----------|------------------|------------------|------------------|
| Año   | Med.pd            | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd   | Depos.<br>(kg/ha) | Precipit. | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 2015  | (mg/l)            |                   | ` /            | (mg/l)   |                   | (mm)      | , 0              | · U              |                  |
| 2017  | 3,98              | 16,74             | 421            | 0,39     | 1,75              | 443       | 15,00            | 16,19            | 1,94             |
| 2018  | 2,72              | 18,28             | 673            | 0,29     | 1,95              | 678       | 16,33            | 17,14            | 2,96             |
| 2019  | 2,79              | 13,93             | 500            | 1,64     | 8,59              | 525       | 5,34             | 17,04            | 3,33             |
| 2020  | 3,13              | 21,10             | 675            | 0,32     | 2,04              | 634       | 19,05            | 22,26            | 2,32             |
| 2021  | 2,47              | 18,65             | 755            | 9,35     | 1,77              | 736       | 16,88            | 15,69            | 1,94             |
| Media | 3,18              | 17,77             | 588            | 1,23     | 5,29              | 623       | 12,48            | 16,93            | 5,69             |

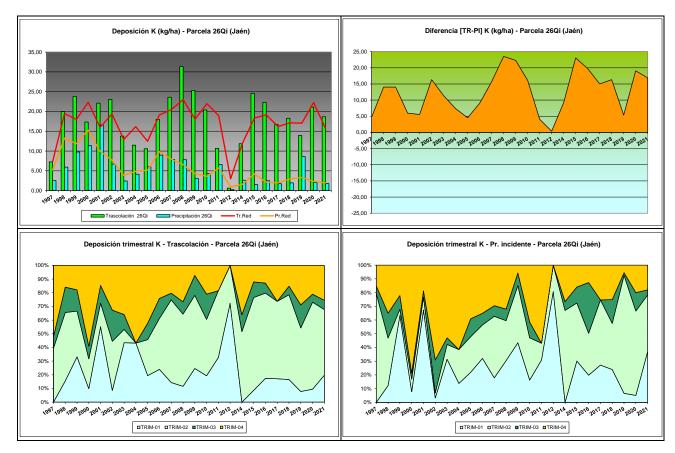


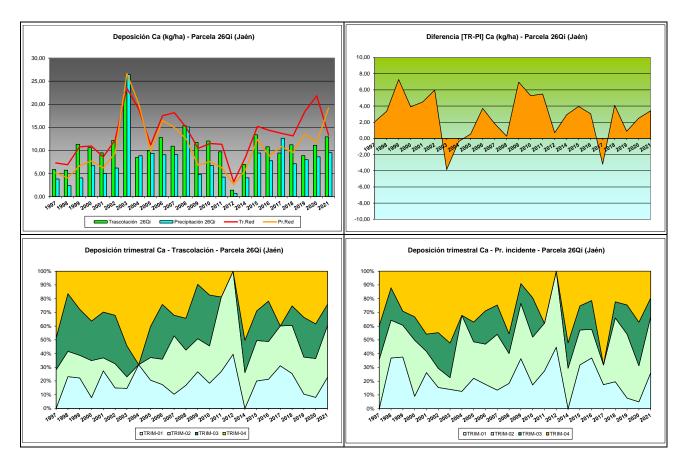
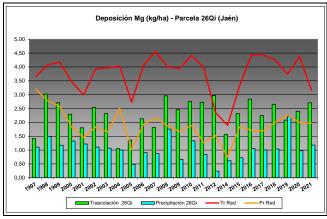

FIG 10: Variación temporal de deposición de K, diferencia TR-PI, distribución anual de la deposición por trimestres

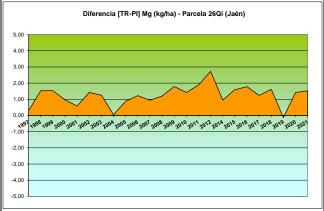
#### 5.4. Calcio.

TABLA 13: Caracterización Calcio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|      | Trascolación (Tr) |                   |                | Precipit | ación incide      | ente (Pi)      | Difer.           | Media            | a Red            |
|------|-------------------|-------------------|----------------|----------|-------------------|----------------|------------------|------------------|------------------|
| Año  | Med.pd            | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd   | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
|      | (mg/l)            |                   |                | (mg/l)   |                   | /              |                  | , 0              |                  |
| 1997 | 1,43              | 5,87              | 411            | 0,67     | 3,82              | 569            | 2,05             | 7,29             | 5,16             |
| 1998 | 1,37              | 5,73              | 419            | 0,41     | 2,38              | 573            | 3,35             | 6,91             | 4,05             |
| 1999 | 2,48              | 11,33             | 457            | 0,70     | 4,05              | 575            | 7,28             | 10,77            | 6,68             |
| 2000 | 1,62              | 10,59             | 653            | 0,83     | 6,69              | 805            | 3,90             | 10,94            | 7,70             |
| 2001 | 1,10              | 9,48              | 863            | 0,51     | 4,98              | 967            | 4,50             | 8,58             | 6,22             |
| 2002 | 1,76              | 12,16             | 691            | 0,84     | 6,18              | 736            | 5,97             | 12,23            | 9,40             |

|       | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 2003  | 2,99   | 22,57        | 756       | 3,11     | 26,43        | 850       | -3,86   | 23,45   | 26,64   |
| 2004  | 1,19   | 8,46         | 708       | 1,49     | 8,84         | 595       | -0,39   | 18,95   | 20,04   |
| 2005  | 3,69   | 9,92         | 269       | 3,07     | 9,37         | 305       | 0,55    | 11,17   | 9,81    |
| 2006  | 2,10   | 12,78        | 609       | 1,31     | 9,07         | 693       | 3,71    | 17,51   | 16,49   |
| 2007  | 2,08   | 10,91        | 524       | 1,53     | 9,09         | 594       | 1,82    | 18,16   | 14,99   |
| 2008  | 2,59   | 15,34        | 593       | 2,08     | 15,07        | 725       | 0,27    | 14,94   | 12,47   |
| 2009  | 2,61   | 11,74        | 449       | 0,96     | 4,78         | 497       | 6,96    | 10,43   | 6,81    |
| 2010  | 1,23   | 12,04        | 979       | 0,69     | 6,76         | 984       | 5,28    | 11,50   | 7,59    |
| 2011  | 1,09   | 9,70         | 894       | 0,67     | 4,22         | 630       | 5,48    | 11,32   | 6,29    |
| 2012  | 0,76   | 1,39         | 184       | 0,37     | 0,69         | 189       | 0,70    | 3,22    | 2,60    |
| 2014  | 1,92   | 6,98         | 364       | 1,13     | 4,06         | 358       | 2,92    | 8,57    | 5,86    |
| 2015  | 3,14   | 13,38        | 426       | 2,38     | 9,43         | 397       | 3,95    | 15,19   | 12,39   |
| 2016  | 1,27   | 10,79        | 851       | 0,87     | 7,76         | 890       | 3,04    | 14,34   | 8,83    |
| 2017  | 2,24   | 9,43         | 421       | 2,85     | 12,62        | 443       | -3,19   | 13,71   | 10,82   |
| 2018  | 1,67   | 11,22        | 673       | 1,05     | 7,12         | 678       | 4,10    | 13,15   | 9,58    |
| 2019  | 1,77   | 8,86         | 500       | 1,52     | 7,99         | 525       | 0,88    | 18,41   | 13,57   |
| 2020  | 1,65   | 11,11        | 675       | 1,36     | 8,62         | 634       | 2,49    | 21,83   | 11,67   |
| 2021  | 1,71   | 12,92        | 755       | 1,29     | 9,51         | 736       | 3,41    | 13,31   | 19,20   |
| Media | 1,89   | 10,61        | 588       | 1,32     | 7,90         | 623       | 2,72    | 13,16   | 10,62   |



FIG 11: Variación temporal de deposición de Ca, diferencia TR-PI, distribución anual de la deposición por trimestres

#### 5.5. Magnesio.

TABLA 14: Caracterización Magnesio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|       | Tra    | ascolación (' | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|---------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.        | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)       | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 1997  | 0,34   | 1,41          | 411       | 0,19     | 1,11         | 569       | 0,31    | 3,66    | 3,20    |
| 1998  | 0,72   | 3,02          | 419       | 0,26     | 1,49         | 573       | 1,53    | 4,07    | 2,78    |
| 1999  | 0,59   | 2,71          | 457       | 0,20     | 1,18         | 575       | 1,53    | 4,18    | 2,58    |
| 2000  | 0,35   | 2,29          | 653       | 0,16     | 1,33         | 805       | 0,97    | 3,46    | 1,84    |
| 2001  | 0,21   | 1,80          | 863       | 0,13     | 1,22         | 967       | 0,58    | 2,99    | 1,45    |
| 2002  | 0,37   | 2,54          | 691       | 0,15     | 1,11         | 736       | 1,43    | 3,93    | 1,83    |
| 2003  | 0,31   | 2,32          | 756       | 0,13     | 1,07         | 850       | 1,25    | 3,97    | 1,65    |
| 2004  | 0,15   | 1,05          | 708       | 0,17     | 1,00         | 595       | 0,05    | 4,03    | 2,51    |
| 2005  | 0,51   | 1,36          | 269       | 0,16     | 0,48         | 305       | 0,88    | 2,73    | 1,01    |
| 2006  | 0,35   | 2,13          | 609       | 0,13     | 0,90         | 693       | 1,23    | 4,06    | 1,94    |
| 2007  | 0,35   | 1,81          | 524       | 0,15     | 0,87         | 594       | 0,94    | 4,56    | 2,17    |
| 2008  | 0,50   | 2,96          | 593       | 0,24     | 1,76         | 725       | 1,20    | 3,99    | 1,87    |
| 2009  | 0,55   | 2,46          | 449       | 0,13     | 0,67         | 497       | 1,79    | 3,95    | 1,67    |
| 2010  | 0,28   | 2,76          | 979       | 0,14     | 1,33         | 984       | 1,42    | 4,42    | 1,89    |
| 2011  | 0,30   | 2,73          | 894       | 0,13     | 0,85         | 630       | 1,88    | 3,98    | 1,27    |
| 2012  | 1,61   | 2,97          | 184       | 0,13     | 0,24         | 189       | 2,73    | 2,35    | 1,52    |
| 2014  | 0,43   | 1,57          | 364       | 0,17     | 0,62         | 358       | 0,95    | 1,90    | 0,75    |
| 2015  | 0,54   | 2,31          | 426       | 0,18     | 0,72         | 397       | 1,59    | 3,32    | 1,84    |
| 2016  | 0,33   | 2,84          | 851       | 0,12     | 1,06         | 890       | 1,78    | 4,44    | 1,71    |
| 2017  | 0,53   | 2,24          | 421       | 0,23     | 1,00         | 443       | 1,24    | 4,43    | 1,69    |
| 2018  | 0,39   | 2,65          | 673       | 0,15     | 1,04         | 678       | 1,61    | 4,24    | 2,01    |
| 2019  | 0,42   | 2,08          | 500       | 0,42     | 2,21         | 525       | -0,13   | 3,74    | 2,26    |
| 2020  | 0,36   | 2,40          | 675       | 0,15     | 0,98         | 634       | 1,42    | 4,38    | 2,00    |
| 2021  | 0,36   | 2,71          | 755       | 0,16     | 1,18         | 736       | 1,53    | 3,16    | 1,97    |
| Media | 0,45   | 2,30          | 588       | 0,17     | 1,06         | 623       | 1,24    | 3,75    | 1,89    |





**A**ÑO **2022** 

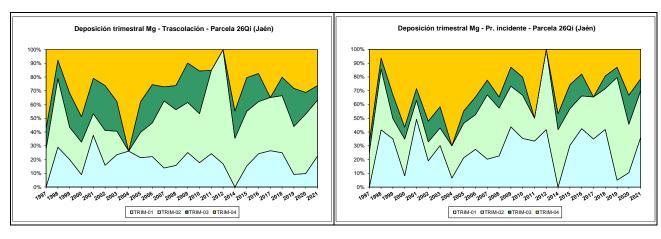



FIG 12: Variación temporal de deposición de Mg, diferencia TR-PI, distribución anual de la deposición por trimestres

# **5.6. Sodio.**

TABLA 15: Caracterización Sodio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|       | Tra             | ascolación (' | Tr)       | Precipit        | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|-----------------|---------------|-----------|-----------------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd          | Depos.        | Precipit. | Med.pd          | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | ( <b>mg/l</b> ) | (kg/ha)       | (mm)      | ( <b>mg/l</b> ) | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 1997  | 0,79            | 3,26          | 411       | 0,60            | 3,44         | 569       | -0,18   | 6,07    | 6,65    |
| 1998  | 1,20            | 5,05          | 419       | 0,75            | 4,31         | 573       | 0,74    | 11,74   | 10,50   |
| 1999  | 1,94            | 8,87          | 457       | 1,40            | 8,06         | 575       | 0,82    | 19,31   | 13,85   |
| 2000  | 1,34            | 8,75          | 653       | 1,10            | 8,89         | 805       | -0,14   | 18,12   | 13,02   |
| 2001  | 1,04            | 8,96          | 863       | 0,98            | 9,46         | 967       | -0,50   | 18,38   | 12,14   |
| 2002  | 1,82            | 12,57         | 691       | 1,64            | 12,07        | 736       | 0,49    | 28,50   | 18,75   |
| 2003  | 1,24            | 9,39          | 756       | 0,91            | 7,77         | 850       | 1,62    | 22,49   | 12,86   |
| 2004  | 0,62            | 4,39          | 708       | 0,88            | 5,23         | 595       | -0,84   | 22,85   | 13,75   |
| 2005  | 1,10            | 2,96          | 269       | 1,05            | 3,20         | 305       | -0,23   | 14,42   | 7,16    |
| 2006  | 1,40            | 8,51          | 609       | 1,28            | 8,88         | 693       | -0,37   | 24,17   | 16,07   |
| 2007  | 0,88            | 4,59          | 524       | 0,68            | 4,03         | 594       | 0,56    | 23,14   | 14,21   |
| 2008  | 1,24            | 7,35          | 593       | 0,88            | 6,37         | 725       | 0,98    | 19,63   | 11,01   |
| 2009  | 1,11            | 4,97          | 449       | 0,83            | 4,11         | 497       | 0,86    | 22,09   | 12,27   |
| 2010  | 1,04            | 10,18         | 979       | 0,86            | 8,51         | 984       | 1,67    | 24,37   | 13,76   |
| 2011  | 2,89            | 25,87         | 894       | 0,29            | 1,84         | 630       | 24,03   | 20,72   | 5,97    |
| 2012  | 0,46            | 0,84          | 184       | 0,27            | 0,51         | 189       | 0,33    | 4,35    | 2,86    |
| 2014  | 1,06            | 3,84          | 364       | 0,81            | 2,90         | 358       | 0,95    | 6,77    | 4,55    |
| 2015  | 0,98            | 4,18          | 426       | 0,70            | 2,78         | 397       | 1,40    | 15,27   | 11,59   |
| 2016  | 0,85            | 7,22          | 851       | 0,63            | 5,64         | 890       | 1,58    | 22,84   | 11,19   |
| 2017  | 1,46            | 6,15          | 421       | 1,17            | 5,21         | 443       | 0,94    | 19,35   | 10,47   |
| 2018  | 1,35            | 9,11          | 673       | 1,06            | 7,22         | 678       | 1,89    | 22,61   | 14,29   |
| 2019  | 1,46            | 7,29          | 500       | 2,00            | 10,49        | 525       | -3,21   | 19,32   | 13,98   |
| 2020  | 0,71            | 4,79          | 675       | 0,59            | 3,75         | 634       | 1,04    | 20,09   | 11,74   |
| 2021  | 0,77            | 5,80          | 755       | 0,63            | 4,61         | 736       | 1,18    | 12,97   | 10,32   |
| Media | 1,20            | 7,29          | 588       | 0,92            | 5,80         | 623       | 1,48    | 18,32   | 11,37   |

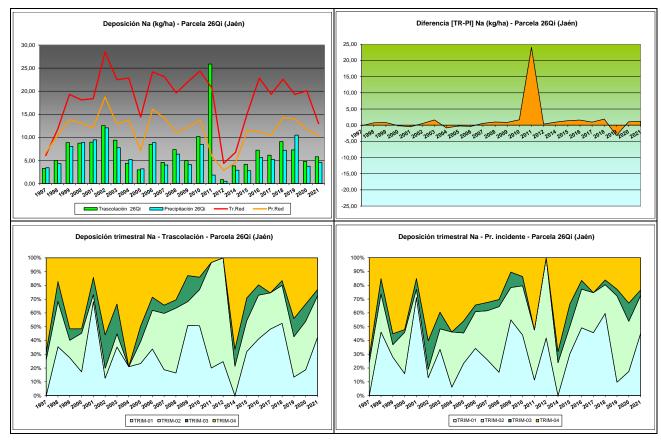



FIG 13: Variación temporal de deposición de Na, diferencia TR-PI, distribución anual de la deposición por trimestres

#### 5.7. Amonio (nitrógeno en forma de).

TABLA 16: Caracterización Amonio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red. N\_NH4 ~ 0,777 NH4

|      | Tra              | ascolación (      | Γr)            | Precipit         | ación incide      | ente (Pi)      | Difer.           | Media            | a Red            |
|------|------------------|-------------------|----------------|------------------|-------------------|----------------|------------------|------------------|------------------|
| Año  | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 1007 | ` 0 /            | , , ,             | 411            |                  |                   | 569            | , 0              | · U              | , 0 ,            |
| 1997 | 0,24             | 0,99              |                | 0,22             | 1,23              |                | -0,24            | 1,81             | 8,19             |
| 1998 | 0,38             | 1,60              | 419            | 0,47             | 2,70              | 573            | -1,10            | 2,24             | 8,36             |
| 1999 | 0,32             | 1,48              | 457            | 0,39             | 2,24              | 575            | -0,76            | 2,71             | 3,66             |
| 2000 | 0,26             | 1,71              | 653            | 0,31             | 2,50              | 805            | -0,79            | 2,48             | 4,26             |
| 2001 | 0,19             | 1,66              | 863            | 0,29             | 2,78              | 967            | -1,12            | 1,86             | 1,82             |
| 2002 | 0,16             | 1,12              | 691            | 0,27             | 1,95              | 736            | -0,83            | 2,43             | 2,91             |
| 2003 | 0,25             | 1,90              | 756            | 0,43             | 3,67              | 850            | -1,78            | 3,06             | 3,10             |
| 2004 | 0,53             | 3,73              | 708            | 0,33             | 1,98              | 595            | 1,75             | 4,12             | 3,23             |
| 2005 | 0,31             | 0,83              | 269            | 0,35             | 1,08              | 305            | -0,25            | 2,41             | 1,80             |
| 2006 | 0,34             | 2,10              | 609            | 0,42             | 2,91              | 693            | -0,81            | 3,62             | 3,05             |
| 2007 | 0,26             | 1,37              | 524            | 0,50             | 2,96              | 594            | -1,59            | 3,53             | 3,58             |
| 2008 | 0,22             | 1,28              | 593            | 0,34             | 2,43              | 725            | -1,16            | 2,91             | 2,62             |
| 2009 | 0,28             | 1,24              | 449            | 0,37             | 1,84              | 497            | -0,60            | 2,73             | 1,82             |
| 2010 | 0,18             | 1,77              | 979            | 0,11             | 1,10              | 984            | 0,67             | 3,12             | 2,09             |
| 2011 | 0,28             | 2,54              | 894            | 0,33             | 2,07              | 630            | 0,47             | 4,36             | 3,15             |
| 2012 | 0,83             | 1,54              | 184            | 0,54             | 1,02              | 189            | 0,51             | 2,26             | 2,06             |
| 2014 | 0,69             | 2,53              | 364            | 0,68             | 2,43              | 358            | 0,10             | 4,16             | 3,35             |

|       | Tra              | ascolación (      | Tr)            | Precipit         | ación incide      | ente (Pi)      | Difer.           | Media            | a Red            |
|-------|------------------|-------------------|----------------|------------------|-------------------|----------------|------------------|------------------|------------------|
| Año   | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 2015  | 0,97             | 4,14              | 426            | 0,61             | 2,42              | 397            | 1,71             | 5,30             | 6,04             |
| 2016  | 0,64             | 5,43              | 851            | 0,46             | 4,07              | 890            | 1,35             | 5,94             | 4,26             |
| 2017  | 0,15             | 0,63              | 421            | 0,19             | 0,84              | 443            | -0,21            | 2,40             | 1,52             |
| 2018  | 0,26             | 1,77              | 673            | 0,19             | 1,29              | 678            | 0,48             | 2,79             | 2,39             |
| 2019  | 0,12             | 0,60              | 500            | 0,15             | 0,78              | 525            | -0,18            | 1,60             | 1,23             |
| 2020  | 0,22             | 1,49              | 675            | 0,14             | 0,87              | 634            | 0,62             | 1,98             | 1,81             |
| 2021  | 0,47             | 3,51              | 755            | 0,24             | 1,78              | 736            | 1,74             | 2,18             | 1,71             |
| Media | 0,36             | 1,96              | 588            | 0,35             | 2,04              | 623            | -0,08            | 3,00             | 3,25             |

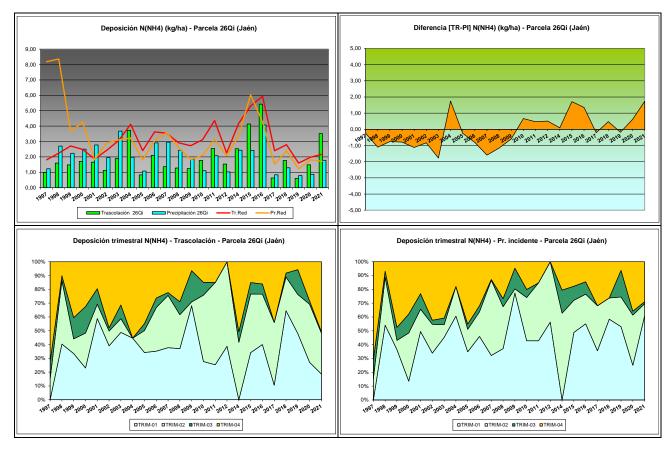


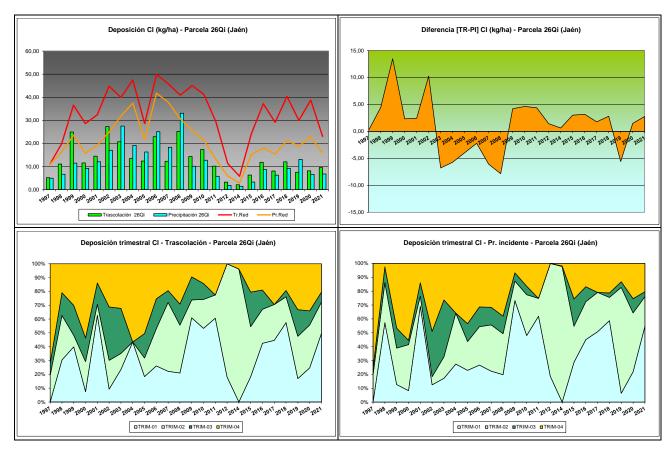
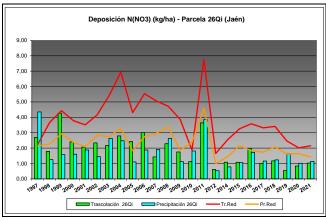

FIG 14: Variación temporal de deposición de amonio, diferencia TR-PI, distribución anual de la deposición por trimestres

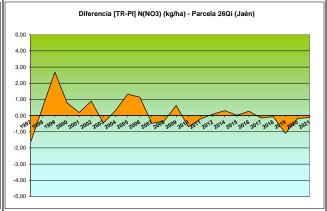
## **5.8.** Cloro.

TABLA 17: Caracterización Cloro. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|      | Tra              | ascolación (      | Tr)            | Precipit         | ación incide      | ente (Pi)      | Difer.           | Media            | a Red            |
|------|------------------|-------------------|----------------|------------------|-------------------|----------------|------------------|------------------|------------------|
| Año  | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 1997 | 1,26             | 5,16              | 411            | 0,87             | 4,93              | 569            | 0,23             | 10,88            | 10,93            |
| 1998 | 2,64             | 11,08             | 419            | 1,16             | 6,66              | 573            | 4,42             | 19,88            | 16,27            |
| 1999 | 5,46             | 24,95             | 457            | 1,99             | 11,47             | 575            | 13,48            | 36,56            | 23,56            |
| 2000 | 1,77             | 11,55             | 653            | 1,14             | 9,21              | 805            | 2,33             | 28,62            | 15,70            |

|       | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 2001  | 1,68   | 14,47        | 863       | 1,25     | 12,04        | 967       | 2,43    | 32,37   | 19,20   |
| 2002  | 3,95   | 27,29        | 691       | 2,31     | 17,03        | 736       | 10,26   | 44,79   | 24,88   |
| 2003  | 2,74   | 20,74        | 756       | 3,24     | 27,52        | 850       | -6,78   | 39,97   | 31,89   |
| 2004  | 1,90   | 13,44        | 708       | 3,22     | 19,15        | 595       | -5,71   | 47,45   | 37,43   |
| 2005  | 4,60   | 12,37        | 269       | 5,35     | 16,31        | 305       | -3,95   | 28,61   | 21,76   |
| 2006  | 3,76   | 22,89        | 609       | 3,62     | 25,10        | 693       | -2,20   | 49,90   | 41,76   |
| 2007  | 2,34   | 12,26        | 524       | 3,09     | 18,34        | 594       | -6,08   | 45,78   | 37,79   |
| 2008  | 4,25   | 25,23        | 593       | 4,56     | 33,06        | 725       | -7,84   | 40,90   | 30,60   |
| 2009  | 3,20   | 14,35        | 449       | 2,04     | 10,14        | 497       | 4,21    | 45,08   | 25,80   |
| 2010  | 1,78   | 17,38        | 979       | 1,30     | 12,75        | 984       | 4,63    | 41,17   | 21,32   |
| 2011  | 1,14   | 10,15        | 894       | 0,91     | 5,76         | 630       | 4,39    | 29,44   | 13,12   |
| 2012  | 1,76   | 3,23         | 184       | 0,95     | 1,79         | 189       | 1,44    | 11,34   | 5,87    |
| 2014  | 0,57   | 2,09         | 364       | 0,41     | 1,46         | 358       | 0,63    | 5,78    | 2,90    |
| 2015  | 1,48   | 6,31         | 426       | 0,83     | 3,29         | 397       | 3,02    | 24,25   | 15,25   |
| 2016  | 1,39   | 11,83        | 851       | 0,97     | 8,65         | 890       | 3,18    | 37,19   | 18,03   |
| 2017  | 1,91   | 8,06         | 421       | 1,42     | 6,28         | 443       | 1,78    | 29,16   | 15,38   |
| 2018  | 1,79   | 12,01        | 673       | 1,36     | 9,19         | 678       | 2,82    | 40,34   | 21,30   |
| 2019  | 1,50   | 7,51         | 500       | 2,49     | 13,09        | 525       | -5,58   | 29,98   | 18,87   |
| 2020  | 1,20   | 8,12         | 675       | 1,05     | 6,64         | 634       | 1,48    | 38,79   | 22,86   |
| 2021  | 1,26   | 9,55         | 755       | 0,92     | 6,78         | 736       | 2,77    | 23,04   | 15,99   |
| Media | 2,31   | 13,00        | 588       | 1,94     | 11,94        | 623       | 1,06    | 32,55   | 21,19   |



FIG 15: Variación temporal de deposición de Cl, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.9. Nitratos (nitrógeno en forma de).

TABLA 18: Caracterización Nitratos. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red. N\_NO3 ~ 0,226 NO3

|       | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 1997  | 0,66   | 2,70         | 411       | 0,77     | 4,35         | 569       | -1,66   | 2,24    | 2,13    |
| 1998  | 0,43   | 1,79         | 419       | 0,22     | 1,25         | 573       | 0,54    | 3,67    | 2,27    |
| 1999  | 0,93   | 4,27         | 457       | 0,28     | 1,58         | 575       | 2,68    | 4,43    | 2,94    |
| 2000  | 0,37   | 2,40         | 653       | 0,20     | 1,61         | 805       | 0,80    | 3,79    | 2,38    |
| 2001  | 0,24   | 2,07         | 863       | 0,19     | 1,88         | 967       | 0,19    | 3,51    | 2,09    |
| 2002  | 0,34   | 2,34         | 691       | 0,20     | 1,45         | 736       | 0,89    | 4,15    | 2,84    |
| 2003  | 0,29   | 2,17         | 756       | 0,31     | 2,63         | 850       | -0,46   | 5,39    | 2,74    |
| 2004  | 0,39   | 2,80         | 708       | 0,42     | 2,48         | 595       | 0,32    | 6,93    | 3,28    |
| 2005  | 0,90   | 2,43         | 269       | 0,36     | 1,10         | 305       | 1,32    | 4,31    | 1,83    |
| 2006  | 0,49   | 3,01         | 609       | 0,27     | 1,88         | 693       | 1,13    | 5,54    | 2,75    |
| 2007  | 0,27   | 1,43         | 524       | 0,32     | 1,91         | 594       | -0,48   | 5,06    | 2,96    |
| 2008  | 0,39   | 2,29         | 593       | 0,36     | 2,63         | 725       | -0,34   | 4,72    | 3,38    |
| 2009  | 0,39   | 1,75         | 449       | 0,23     | 1,12         | 497       | 0,63    | 3,87    | 1,87    |
| 2010  | 0,20   | 1,12         | 979       | 0,18     | 1,82         | 984       | -0,69   | 1,87    | 2,37    |
| 2011  | 0,41   | 3,64         | 894       | 0,61     | 3,85         | 630       | -0,21   | 7,76    | 4,61    |
| 2012  | 0,33   | 0,61         | 184       | 0,28     | 0,53         | 189       | 0,08    | 1,65    | 0,99    |
| 2014  | 0,30   | 1,09         | 364       | 0,22     | 0,78         | 358       | 0,31    | 2,54    | 1,43    |
| 2015  | 0,25   | 1,08         | 426       | 0,27     | 1,06         | 397       | 0,02    | 3,25    | 2,17    |
| 2016  | 0,23   | 1,99         | 851       | 0,19     | 1,72         | 890       | 0,27    | 3,58    | 1,83    |
| 2017  | 0,24   | 1,01         | 421       | 0,26     | 1,16         | 443       | -0,15   | 3,32    | 1,74    |
| 2018  | 0,17   | 1,17         | 673       | 0,18     | 1,24         | 678       | -0,07   | 3,41    | 2,08    |
| 2019  | 0,11   | 0,55         | 500       | 0,31     | 1,64         | 525       | -1,10   | 2,46    | 1,61    |
| 2020  | 0,12   | 0,83         | 675       | 0,16     | 1,02         | 634       | -0,18   | 2,02    | 1,64    |
| 2021  | 0,14   | 1,03         | 755       | 0,15     | 1,14         | 736       | -0,11   | 2,15    | 1,43    |
| Media | 0,36   | 1,90         | 588       | 0,29     | 1,74         | 623       | 0,15    | 3,82    | 2,31    |





**A**ÑO **2022** 

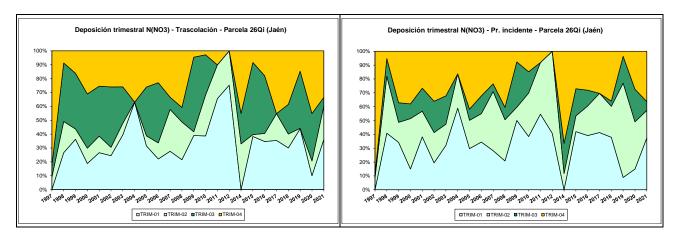



FIG 16: Variación temporal de deposición de nitratos, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.10. Sulfatos (azufre en forma de).

TABLA 19: Caracterización Sulfatos. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red. S\_SO4 ~ 0,333 SO4

|       | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 1997  | 0,27   | 1,11         | 411       | 0,23     | 1,34         | 569       | -0,22   | 3,00    | 3,70    |
| 1998  | 0,82   | 3,43         | 419       | 0,49     | 2,82         | 573       | 0,61    | 5,81    | 5,79    |
| 1999  | 1,14   | 5,19         | 457       | 0,60     | 3,42         | 575       | 1,77    | 7,17    | 6,35    |
| 2000  | 0,42   | 2,72         | 653       | 0,33     | 2,66         | 805       | 0,06    | 6,42    | 4,57    |
| 2001  | 0,37   | 3,23         | 863       | 0,32     | 3,07         | 967       | 0,17    | 5,68    | 4,11    |
| 2002  | 0,60   | 4,12         | 691       | 0,49     | 3,61         | 736       | 0,51    | 7,73    | 6,07    |
| 2003  | 0,48   | 3,63         | 756       | 0,40     | 3,39         | 850       | 0,24    | 6,85    | 4,80    |
| 2004  | 0,45   | 3,17         | 708       | 0,59     | 3,49         | 595       | -0,32   | 8,72    | 5,84    |
| 2005  | 0,60   | 1,62         | 269       | 0,52     | 1,57         | 305       | 0,05    | 4,69    | 3,12    |
| 2006  | 0,52   | 3,15         | 609       | 0,44     | 3,04         | 693       | 0,11    | 6,80    | 4,69    |
| 2007  | 0,45   | 2,36         | 524       | 0,46     | 2,72         | 594       | -0,36   | 7,24    | 5,12    |
| 2008  | 0,25   | 1,45         | 593       | 0,22     | 1,57         | 725       | -0,11   | 4,49    | 2,61    |
| 2009  | 0,37   | 1,68         | 449       | 0,30     | 1,48         | 497       | 0,20    | 4,67    | 3,32    |
| 2010  | 0,25   | 2,49         | 979       | 0,21     | 2,10         | 984       | 0,39    | 4,27    | 2,88    |
| 2011  | 0,47   | 4,19         | 894       | 0,53     | 3,37         | 630       | 0,82    | 5,93    | 4,57    |
| 2012  | 0,24   | 0,44         | 184       | 0,25     | 0,46         | 189       | -0,02   | 1,84    | 1,35    |
| 2014  | 0,38   | 1,37         | 364       | 0,46     | 1,64         | 358       | -0,27   | 2,14    | 2,00    |
| 2015  | 0,39   | 1,68         | 426       | 0,39     | 1,53         | 397       | 0,15    | 3,56    | 2,95    |
| 2016  | 0,26   | 2,23         | 851       | 0,25     | 2,20         | 890       | 0,03    | 4,08    | 2,76    |
| 2017  | 0,33   | 1,40         | 421       | 0,34     | 1,49         | 443       | -0,10   | 4,28    | 2,71    |
| 2018  | 0,28   | 1,89         | 673       | 0,30     | 2,02         | 678       | -0,13   | 4,28    | 3,39    |
| 2019  | 0,26   | 1,31         | 500       | 0,49     | 2,55         | 525       | -1,24   | 3,75    | 3,13    |
| 2020  | 0,17   | 1,16         | 675       | 0,21     | 1,32         | 634       | -0,16   | 3,59    | 3,24    |
| 2021  | 0,25   | 1,86         | 755       | 0,22     | 1,59         | 736       | 0,27    | 2,60    | 2,69    |
| Media | 0,42   | 2,37         | 588       | 0,38     | 2,27         | 623       | 0,10    | 4,98    | 3,82    |

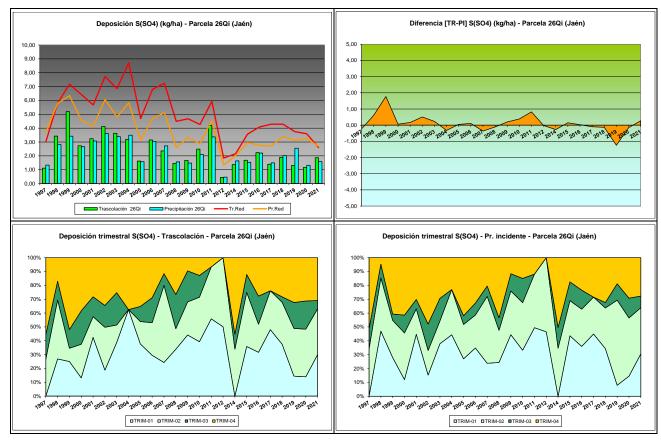



FIG 17: Variación temporal de deposición de sulfatos, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.11. Alcalinidad (µeq/l).

TABLA 20: Caracterización Alcalinidad. Media anual ponderada por volumen, precipitación anual y media de la Red

|      | T             | rascolación (T        | r)                | Precip        | itación inciden       | te (Pi)           | Media  | a Red  |
|------|---------------|-----------------------|-------------------|---------------|-----------------------|-------------------|--------|--------|
| Año  | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Trasc  | P.inc  |
| 1997 |               |                       | 411               |               |                       | 569               |        |        |
| 1998 |               |                       | 419               |               |                       | 573               |        |        |
| 1999 | 251,09        |                       | 457               | 300,13        |                       | 575               | 258,14 | 255,59 |
| 2000 | 162,86        |                       | 653               | 161,06        |                       | 805               | 157,24 | 154,47 |
| 2001 | 101,03        |                       | 863               | 67,90         |                       | 967               | 76,17  | 54,64  |
| 2002 | 154,96        |                       | 691               | 121,06        |                       | 736               | 169,83 | 139,42 |
| 2003 | 5,91          |                       | 756               | 5,42          |                       | 850               | 21,95  | 10,18  |
| 2004 | 48,69         |                       | 708               | 55,57         |                       | 595               | 109,89 | 117,44 |
| 2005 | 83,80         |                       | 269               | 57,85         |                       | 305               | 76,86  | 45,33  |
| 2006 | 70,75         |                       | 609               | 43,08         |                       | 693               | 105,76 | 56,48  |
| 2007 | 63,62         |                       | 524               | 40,38         |                       | 594               | 59,09  | 37,75  |
| 2008 | 96,17         |                       | 593               | 32,03         |                       | 725               | 71,35  | 40,35  |
| 2009 | 155,43        |                       | 449               | 33,43         |                       | 497               | 68,62  | 36,01  |
| 2010 | 75,53         |                       | 979               | 43,59         |                       | 984               | 86,39  | 49,13  |
| 2011 | 89,65         |                       | 894               | 49,00         |                       | 630               | 75,33  | 49,79  |
| 2012 |               |                       | 184               |               |                       | 189               | 19,53  | 10,46  |
| 2014 | 150,40        |                       | 364               | 139,39        |                       | 358               | 136,23 | 120,02 |

|       | T             | rascolación (T        | r)                | Precip        | itación inciden       | nte (Pi)          | Media  | a Red |
|-------|---------------|-----------------------|-------------------|---------------|-----------------------|-------------------|--------|-------|
| Año   | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Trasc  | P.inc |
| 2015  | 137,34        |                       | 426               | 74,61         |                       | 397               | 114,70 | 71,81 |
| 2016  | 93,61         |                       | 851               | 85,47         |                       | 890               | 108,18 | 61,70 |
| 2017  | 88,64         |                       | 421               | 61,03         |                       | 443               | 132,93 | 56,84 |
| 2018  | 73,18         |                       | 673               | 43,61         |                       | 678               | 94,72  | 48,11 |
| 2019  | 76,57         |                       | 500               | 48,40         |                       | 525               | 101,80 | 58,32 |
| 2020  | 90,61         |                       | 675               | 34,43         |                       | 634               | 86,06  | 49,71 |
| 2021  | 101,03        |                       | 755               | 42,25         |                       | 736               | 117,39 | 82,82 |
| Media | 103,37        |                       | 588               | 73,32         |                       | 623               | 102,19 | 73,02 |

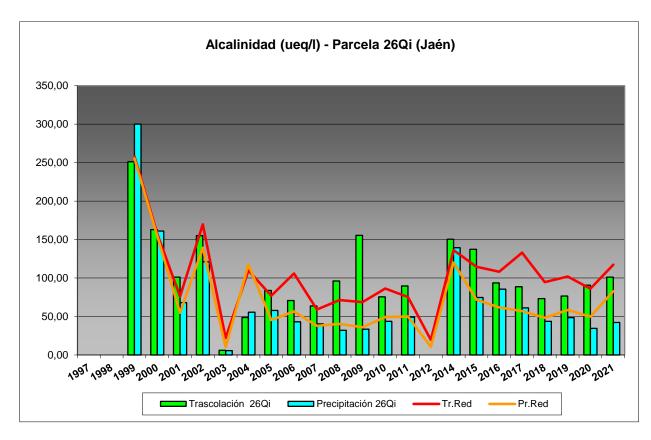



FIG 18: Variación temporal de la alcalinidad.

# 5.12. Nitrógeno total.

TABLA 21: Caracterización Nitrógeno total. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|      | Tra              | ascolación ('     | Tr)            | Precipit         | ación incide      | ente (Pi)      | Difer. Med       |                  | a Red            |
|------|------------------|-------------------|----------------|------------------|-------------------|----------------|------------------|------------------|------------------|
| Año  | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 1997 |                  | , ,               | 411            | , ,              |                   | 569            |                  | · U              | , U              |
| 1998 |                  |                   | 419            |                  |                   | 573            |                  |                  |                  |
| 1999 | 1,26             | 5,75              | 457            | 0,66             | 3,82              | 575            | 1,93             | 7,14             | 6,59             |
| 2000 | 0,63             | 4,12              | 653            | 0,51             | 4,11              | 805            | 0,01             | 6,27             | 6,64             |
| 2001 | 0,43             | 3,72              | 863            | 0,48             | 4,65              | 967            | -0,93            | 5,37             | 3,91             |

|       | Tra              | ascolación (      | Tr)            | Precipit         | ación incide      | ente (Pi)      | Difer.           | Media            | a Red            |
|-------|------------------|-------------------|----------------|------------------|-------------------|----------------|------------------|------------------|------------------|
| Año   | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | Med.pd<br>(mg/l) | Depos.<br>(kg/ha) | Precipit. (mm) | TR-PI<br>(kg/ha) | Trasc<br>(kg/ha) | P.inc<br>(kg/ha) |
| 2002  | 0,50             | 3,46              | 691            | 0,46             | 3,40              | 736            | 0,06             | 6,58             | 5,75             |
| 2003  | 0,67             | 5,06              | 756            | 0,74             | 6,31              | 850            | -1,25            | 8,44             | 5,84             |
| 2004  |                  |                   | 708            |                  |                   | 595            |                  |                  |                  |
| 2005  | 1,24             | 3,35              | 269            | 0,74             | 2,26              | 305            | 1,08             | 4,96             | 2,97             |
| 2006  | 0,86             | 5,21              | 609            | 0,71             | 4,92              | 693            | 0,30             | 9,06             | 5,73             |
| 2007  | 0,51             | 2,68              | 524            | 0,78             | 4,66              | 594            | -1,99            | 8,53             | 6,45             |
| 2008  |                  |                   | 593            |                  |                   | 725            |                  |                  |                  |
| 2009  |                  |                   | 449            |                  |                   | 497            |                  |                  |                  |
| 2010  |                  |                   | 979            |                  |                   | 984            |                  |                  |                  |
| 2011  |                  |                   | 894            |                  |                   | 630            |                  |                  |                  |
| 2012  |                  |                   | 184            |                  |                   | 189            |                  |                  |                  |
| 2014  |                  |                   | 364            |                  |                   | 358            |                  |                  |                  |
| 2015  |                  |                   | 426            |                  |                   | 397            |                  |                  |                  |
| 2016  |                  |                   | 851            |                  |                   | 890            |                  |                  |                  |
| 2017  |                  |                   | 421            |                  |                   | 443            |                  |                  |                  |
| 2018  |                  |                   | 673            |                  |                   | 678            |                  |                  |                  |
| 2019  |                  | _                 | 500            |                  |                   | 525            | _                | _                |                  |
| 2020  | 0,59             | 3,97              | 675            | 0,41             | 2,61              | 634            | 1,37             | 5,40             | 4,36             |
| 2021  | 1,12             | 8,42              | 755            | 0,63             | 4,64              | 736            | 3,78             | 8,83             | 5,67             |
| Media | 0,78             | 4,57              | 588            | 0,61             | 4,14              | 623            | 0,44             | 7,06             | 5,39             |

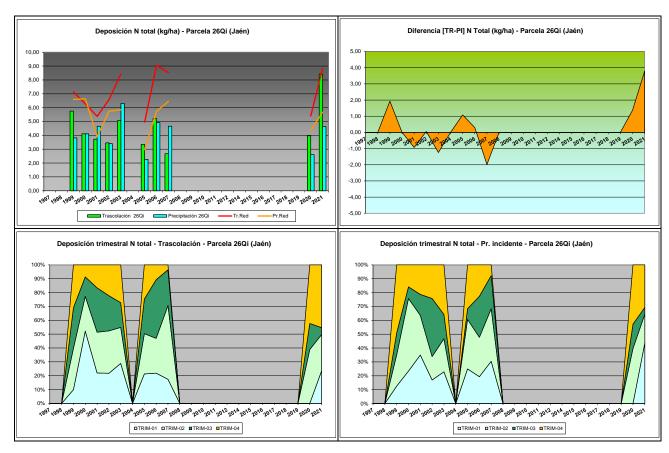



FIG 19: Variación temporal de deposición de Ntotal, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.13. Carbono orgánico disuelto – DOC (mg/l).

TABLA 22: Caracterización Alcalinidad. Media anual ponderada por volumen, precipitación anual y media de la Red

|       | T             | rascolación (T        | r)                | Precip        | itación inciden       | te (Pi)           | Media Red |       |
|-------|---------------|-----------------------|-------------------|---------------|-----------------------|-------------------|-----------|-------|
| Año   | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Media<br>pond | Deposición<br>(kg/ha) | Precipit.<br>(mm) | Trasc     | P.inc |
| 2020  | 38,27         |                       | 675               | 15,85         |                       | 634               | 54,88     | 57,75 |
| 2021  | 34,59         |                       | 754,9             | 75,70         |                       | 736,2             | 48,33     | 66,04 |
| Media | 36,43         |                       | 715               | 45,78         |                       | 685               | 51,61     | 61,90 |

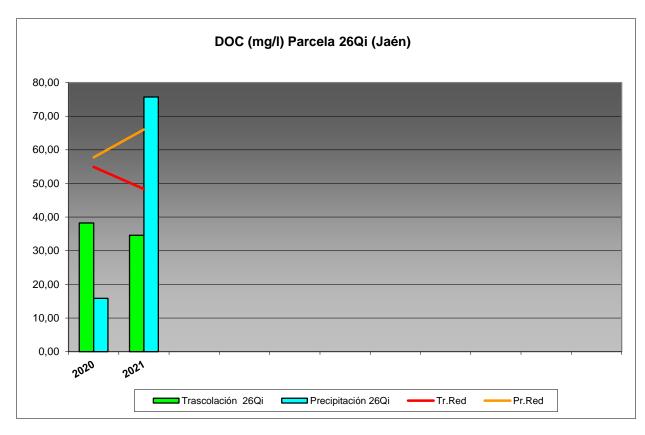



FIG 20: Variación temporal de DOC.

# 5.14. Aluminio.

TABLA 23: Caracterización Aluminio. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolaciónprecipitación incidente y media de la Red

|       | Tra    | ascolación (' | Tr)       | Precipit | ación incido | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|---------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.        | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)       | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 2020  | 0,04   | 0,25          | 675       | 0,02     | 0,12         | 634       | 0,13    | 0,38    | 0,25    |
| 2021  | 0,03   | 0,25          | 755       | 0,02     | 0,15         | 736       | 0,11    | 0,28    | 0,19    |
| Media | 0,04   | 0,25          | 715       | 0,02     | 0,13         | 685       | 0,12    | 0,33    | 0,22    |

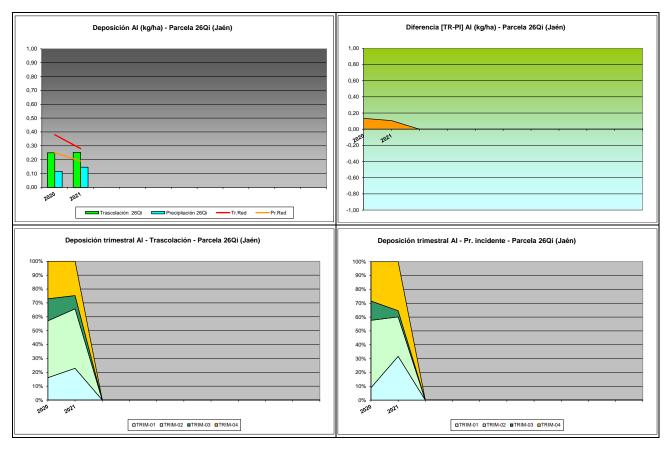



FIG 21: Variación temporal de deposición de Al, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.15. Manganeso.

TABLA 24: Caracterización Manganeso. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|       | Tra    | ascolación ( | Tr)       | Precipit | ación incide | ente (Pi) | Difer.  | Media   | a Red   |
|-------|--------|--------------|-----------|----------|--------------|-----------|---------|---------|---------|
| Año   | Med.pd | Depos.       | Precipit. | Med.pd   | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |
|       | (mg/l) | (kg/ha)      | (mm)      | (mg/l)   | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |
| 2020  | 0,04   | 0,29         | 675       | 0,00     | 0,03         | 634       | 0,27    | 0,21    | 0,05    |
| 2021  | 0,04   | 0,28         | 755       | 0,00     | 0,03         | 736       | 0,26    | 0,17    | 0,04    |
| Media | 0,04   | 0,29         | 715       | 0,00     | 0,03         | 685       | 0,26    | 0,19    | 0,05    |

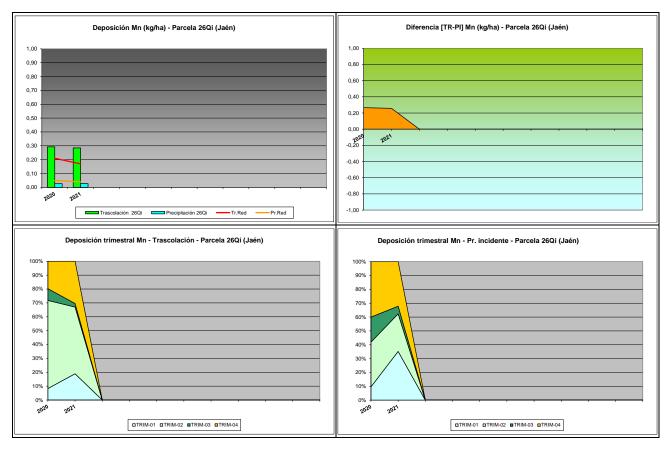
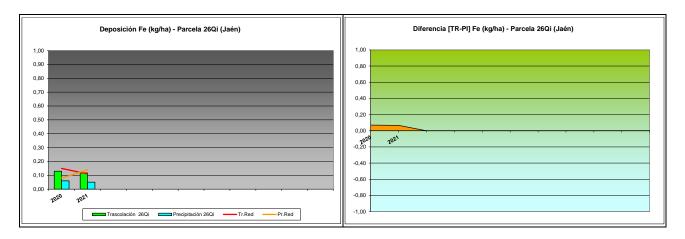




FIG 22: Variación temporal de deposición de Mn, diferencia TR-PI, distribución anual de la deposición por trimestres

# 5.16. Hierro.

TABLA 25: Caracterización Hierro. Media anual ponderada por volumen, deposición anual total, precipitación anual, diferencia trascolación-precipitación incidente y media de la Red

|       | Tra    | Trascolación (Tr) |           |        | ación incide | ente (Pi) | Difer.  | Media   | a Red   |  |  |  |
|-------|--------|-------------------|-----------|--------|--------------|-----------|---------|---------|---------|--|--|--|
| Año   | Med.pd | Depos.            | Precipit. | Med.pd | Depos.       | Precipit. | TR-PI   | Trasc   | P.inc   |  |  |  |
|       | (mg/l) | (kg/ha)           | (mm)      | (mg/l) | (kg/ha)      | (mm)      | (kg/ha) | (kg/ha) | (kg/ha) |  |  |  |
| 2020  | 0,02   | 0,13              | 675       | 0,01   | 0,06         | 634       | 0,07    | 0,15    | 0,08    |  |  |  |
| 2021  | 0,02   | 0,12              | 755       | 0,01   | 0,05         | 736       | 0,07    | 0,11    | 0,14    |  |  |  |
| Media | 0,02   | 0,12              | 715       | 0,01   | 0,05         | 685       | 0,07    | 0,13    | 0,11    |  |  |  |



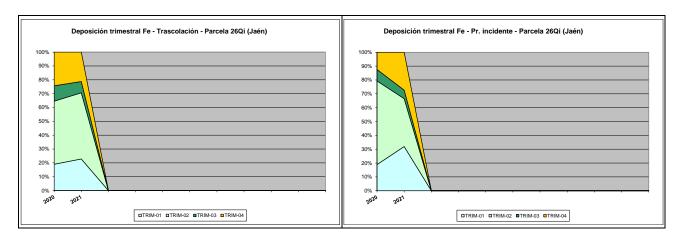



FIG 23: Variación temporal de deposición de Fe, diferencia TR-PI, distribución anual de la deposición por trimestres

## 5.17. Interpretación de resultados.

En cuanto a la deposición atmosférica y por lo que se refiere a la parcela 26Qi, cabe destacar:

El valor del **pH** es en general menos estable que en otros puntos, presentando mayor variación interanual, superando generalmente los valores medios de la Red, y sin apenas representación de casos por debajo del umbral de lluvia ácida, con un apreciable incremento del parámetro durante el último año, sobre todo por lo que respecta a la trascolación, mientras se reduce ligeramente el pH de las muestras tomadas a campo abierto, vía esta en la que incluso se registran algunas muestras que podrían calificarse como "lluvia ácida". Como en otras parcelas, durante el año analizado ha aumentado la precipitación que se sitúa en 736 mm, por encima de los valores medios de la estación. Los valores de la intercepción son bajos, en torno al 5 %, como corresponde a una masa de escasa densidad arbórea, con una estructura adehesada y escasa capacidad de interferir en el aporte de agua al suelo.

Por lo que se refiere a la **conductividad**, se advierten valores generalmente por debajo del resto de la Red a lo largo de la serie de años, sin superarse los 40 µS/cm, y mayores valores en la serie de trascolación debido a la incidencia del depósito sobre la cubierta arbórea. A lo largo del último bienio se ha observado un comportamiento muy estable del parámetro, que se sitúa por debajo de 30 µS/cm en ambas vías.

En cuanto al **potasio**, presenta valores superiores a los de la media de la red, diferencia que va atenuándose durante los últimos años, registrándose durante la última revisión una discreta reducción de las tasas obtenidas bajo cubierta y una estabilidad de los aportes a cielo abierto, en la línea de lo observado durante los últimos años, con la excepción de 2019. Como suele ser habitual, se registran mayores deposiciones bajo cubierta arbórea, aunque los efectos de la deposición seca se verían atenuados en una masa de espesura defectiva, con menor capacidad de depósito.

El **calcio**, elemento también de aporte térreo, se mantiene en niveles algo superiores a los habidos durante el año previo, con valores inferiores a los de la media nacional, con máximos en 2003 y reducción paulatina de las tasas a partir de ese momento, con un ligero repunte en 2008 y 2015, con una reducción paulatina de los aportes de trascolación y un incremento de las tasas a campo abierto. Por regla general los aportes obtenidos bajo cubierta han tendido a superar los producidos a cielo abierto, posiblemente debido al comportamiento de la deposición seca.

Por lo que respecta al **magnesio**, se han registrado depósitos en general bajos, por debajo de 3 kg/ha, y siempre inferiores al valor medio de la Red; sin demasiada variación a lo largo de los años. Como en

# RED EUROPEA DE SEGUIMIENTO INTENSIVO Y CONTINUO DE LOS ECOSISTEMAS FORESTALES — RED DE NIVEL II

26 Qi (JAEN)

Año 2022

elementos anteriores, se registra un ligero incremento del aporte en ambas vías, sin mayor trascendencia. Como en casos anteriores y presumiblemente por idénticos motivos, la deposición bajo arbolado ha superado a la obtenida a cielo abierto.

El **sodio**, elemento procedente en gran parte del aporte de sal marina, presenta en general valores inferiores a la media de la Red, exceptuando las elevadas tasas obtenidas en trascolación en 2011, para reducirse notablemente en los años siguientes, experimentando un comportamiento muy estable y creciente a lo largo de los últimos años para reducirse durante los dos últimos años en ambas vías de entrada, situándose en el entorno de los 5 kg/ha y rompiendo con la tendencia creciente que se venía observando anteriormente. Salvo en el mencionado año de 2011, apenas se han registrado diferencias entre las dos vías de entrada al sistema a lo largo del periodo examinado.

El **amonio**, sustancia muy ligada a la actividad agrícola y ganadera, presenta en general niveles inferiores a la media de la Red, con un considerable incremento durante el último año, en el que las tasas bajo cubierta se sitúan por encima de la media nacional, lo que rompe con la tendencia de la serie histórica, duplicándose el aporte con respecto a los últimos tres años, si bien no se superan los 4 kg/ha. Como viene siendo habitual, la deposición correspondiente a la trascolación supera a la habida a campo abierto, posiblemente debido a los efectos de la deposición seca, sobre todo en el tramo final de la serie.

Por lo que respecta al **cloro**, muy influenciado también por la sal marina, se registran las mayores tasas en 2002-2003 y 2008, punto a partir del cual empieza a disminuir. Los depósitos obtenidos se han situado siempre por debajo de los valores medios de la Red y se mantienen bastante estables bajo cubierta mientras se reducen de forma más apreciable a cielo abierto, sin superar los 10 kg/ha durante el último año. Las diferencias entre las dos vías de entrada han resultado más erráticas, con cierto desequilibrio a favor de la precipitación a campo abierto hacia la mitad de la serie histórica.

Las tasas de deposición de **nitratos y sulfatos** son en general inferiores a la media de la Red, y como el caso del amonio, se sitúan en el entorno de los 2-3 kg/ha, con un cierto repunte en 2011 y un ligero incremento con respecto al año previo, con uno de los valores más bajos de la serie, en torno a 1 kg/ha. En ambos compuestos las tasas en trascolación superan ligeramente a las de la precipitación incidente, tendencia esta que se invierte durante los últimos años.

Por lo que respecta a la **alcalinidad**, se advierten en general valores inferiores a las medias de la Red, superiores bajo cubierta arbórea, con una tendencia progresivamente descendente desde los valores más altos habidos al comienzo de la serie histórica, llegándose a superar los  $250 \,\mu\text{eq/l}$ , picos episódicos en  $2009 \,\text{o}$   $2014 \,\text{y}$  una situación bastante estable durante los últimos años, en los que no se han superado los  $100 \,\mu\text{eq/l}$ , advirtiéndose un ligero repunte durante el último año.

Desde 2020 se retoma el análisis del **nitrógeno total**, interrumpido en 2007, que experimenta uno de los mayores valores de la serie histórica, con un marcado incremento respecto a la revisión del año previo. Se han analizado también el **carbono orgánico disuelto** con un marcado incremento de los valores obtenidos a cielo abierto, **aluminio, manganeso y hierro**, también con aportes mayores bajo arbolado y en tasas traza en todos los casos, sin superar 0,3 kg/ha.

Se observa también que las mayores deposiciones se producen a lo largo del otoño-invierno. Las escasas diferencias encontradas entre los depósitos bajo cubierta y al raso podrían explicarse también por la escasa densidad de la masa, en torno a 100 pies/ha y lo bajo de la tasa de intercepción, que reduciría la capacidad de almacenaje sobre el arbolado y atenuaría las diferencias entre las dos vías de entrada al sistema.



#### 6. Calidad del aire. Inmisión.

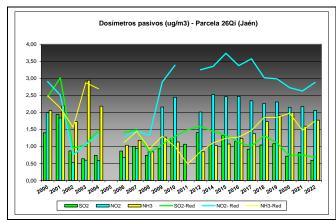
Además del aporte de un determinado componente al ecosistema forestal, vía deposición seca/húmeda evaluada en el apartado anterior, en la Red Europea de Nivel II se mide desde 2000 la concentración en el aire de determinados contaminantes, lo que se conoce con el nombre de inmisión. Normativamente y en España se analiza la concentración de dióxido de azufre, dióxido de nitrógeno, amonio (expresados en µg/m³) y ozono (expresado en ppb).

La medición se hace a través de dosímetros pasivos, dispositivos de muestreo dotados de un compuesto químico diana sensible a los distintos contaminantes con los que va reaccionando y que permite evaluar la concentración en aire de los mismos. En el periodo 2000-2009 el cambio de dispositivos fue quincenal, efectuándose de forma mensual a partir de 2010.

Como valores de referencia para estos parámetros, se han tomado:

TABLA 26: Valores de referencia de calidad del aire mediante dosímetros pasivos

| Variable        | Descripción                                                                 | Valores de<br>referencia (*) |
|-----------------|-----------------------------------------------------------------------------|------------------------------|
| $SO_2$          | Promedio anual. Nivel crítico Mapping Manual ICP-2010 (afección a líquenes) | $10 \mu\text{g/m}^3$         |
| $NO_2$          | Promedio anual. Nivel crítico Mapping Manual ICP-2010                       | $30 \mu g/m^3$               |
| NH <sub>3</sub> | Promedio Anual. Protección líquenes y briofitos                             | $1 \mu g/m^3$                |
| 1 <b>NII</b> 3  | Promedio Anual. Protección plantas superiores                               | $2-4 \mu g/m^3$              |


<sup>(\*)</sup> Seguimiento de la Calidad Ambiental y de los Daños por Contaminación en los Bosques Españoles. Proyecto LIFE 07 ENV/DE/000218 FutMon. Ministerio de Medio Ambiente y Medio Rural y Marino, Fundación CEAM, 2011.

Los principales resultados habidos en la parcela se especifican a continuación.

TABLA 27: Inmisión atmosférica. Concentraciones medias anuales de los distintos contaminantes en la parcela y media de la Red. O<sub>3</sub> 1 ppb ~ 1,96  $\mu$ g/m<sup>3</sup>

|      |                                         | Par                                     | cela                                 |                      |                                         | Media                                   | a Red                                |                      |
|------|-----------------------------------------|-----------------------------------------|--------------------------------------|----------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|----------------------|
| Año  | SO <sub>2</sub><br>(μg/m <sup>3</sup> ) | NO <sub>2</sub><br>(μg/m <sup>3</sup> ) | NH <sub>3</sub> (μg/m <sup>3</sup> ) | O <sub>3</sub> (ppb) | SO <sub>2</sub><br>(μg/m <sup>3</sup> ) | NO <sub>2</sub><br>(μg/m <sup>3</sup> ) | NH <sub>3</sub> (μg/m <sup>3</sup> ) | O <sub>3</sub> (ppb) |
| 2000 | 1,40                                    | 1,99                                    | 2,05                                 | 35,82                | 2,45                                    | 2,91                                    | 2,49                                 | 34,34                |
| 2001 | 1,94                                    | 1,84                                    | 2,19                                 | 40,45                | 3,01                                    | 2,51                                    | 2,13                                 | 38,48                |
| 2002 | 0,87                                    | 0,54                                    | 1,73                                 | 34,62                | 0,95                                    | 0,75                                    | 1,57                                 | 32,70                |
| 2003 | 0,64                                    | 0,60                                    | 2,94                                 | 31,32                | 1,05                                    | 1,07                                    | 2,87                                 | 30,03                |
| 2004 | 0,74                                    | 0,59                                    | 2,18                                 | 26,38                | 1,47                                    | 1,34                                    | 2,69                                 | 25,36                |
| 2005 |                                         |                                         |                                      |                      |                                         |                                         |                                      |                      |
| 2006 | 0,87                                    | 0,68                                    | 1,04                                 | 29,52                | 1,41                                    | 1,27                                    | 1,12                                 | 27,74                |
| 2007 | 1,00                                    | 0,94                                    | 1,18                                 | 29,23                | 1,49                                    | 1,45                                    | 1,44                                 | 27,36                |
| 2008 | 0,74                                    | 0,85                                    | 0,84                                 | 31,65                | 0,82                                    | 1,32                                    | 0,93                                 | 27,18                |
| 2009 | 0,93                                    | 2,16                                    | 1,27                                 | 41,69                | 1,06                                    | 2,89                                    | 1,30                                 | 36,30                |
| 2010 | 1,24                                    | 2,44                                    | 1,13                                 | 43,87                | 1,29                                    | 3,38                                    | 1,00                                 | 37,54                |
| 2011 | 1,07                                    |                                         |                                      |                      | 1,50                                    |                                         | 0,48                                 |                      |
| 2012 | 1,41                                    | 2,01                                    | 0,85                                 | 43,86                | 1,60                                    | 3,25                                    | 0,85                                 | 38,79                |
| 2014 | 1,04                                    | 2,53                                    | 1,03                                 | 34,50                | 1,44                                    | 3,35                                    | 1,11                                 | 29,51                |
| 2015 | 1,32                                    | 2,46                                    | 1,07                                 | 31,78                | 1,32                                    | 3,73                                    | 1,24                                 | 26,27                |

|       |                                         | Par                         | cela                                    |                      |                                         | Media                | a Red                                |                      |
|-------|-----------------------------------------|-----------------------------|-----------------------------------------|----------------------|-----------------------------------------|----------------------|--------------------------------------|----------------------|
| Año   | SO <sub>2</sub><br>(μg/m <sup>3</sup> ) | $NO_2$ (µg/m <sup>3</sup> ) | NH <sub>3</sub><br>(μg/m <sup>3</sup> ) | O <sub>3</sub> (ppb) | SO <sub>2</sub><br>(μg/m <sup>3</sup> ) | $NO_2$ $(\mu g/m^3)$ | NH <sub>3</sub> (μg/m <sup>3</sup> ) | O <sub>3</sub> (ppb) |
| 2016  | 1,14                                    | 2,47                        | 1,23                                    | 33,98                | 1,12                                    | 3,37                 | 1,28                                 | 28,68                |
| 2017  | 0,92                                    | 2,34                        | 1,37                                    | 40,48                | 1,00                                    | 3,57                 | 1,47                                 | 30,55                |
| 2018  | 1,04                                    | 2,27                        | 1,73                                    | 31,16                | 1,32                                    | 3,02                 | 1,85                                 | 27,00                |
| 2019  | 1,08                                    | 2,31                        | 1,90                                    | 29,71                | 1,11                                    | 2,98                 | 1,85                                 | 24,94                |
| 2020  | 0,72                                    | 2,15                        | 2,00                                    | 27,50                | 0,73                                    | 2,73                 | 1,98                                 | 23,42                |
| 2021  | 0,83                                    | 2,17                        | 1,59                                    | 35,21                | 0,76                                    | 2,63                 | 1,47                                 | 25,19                |
| 2022  | 0,60                                    | 2,06                        | 1,77                                    | 23,44                | 0,68                                    | 2,88                 | 1,75                                 | 21,13                |
| Media | 1,03                                    | 1,77                        | 1,56                                    | 33,81                | 1,31                                    | 2,52                 | 1,57                                 | 29,62                |



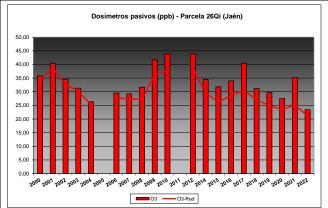



FIG 24: Variación temporal de inmisión por dosímetros

Como puede verse en las gráficas anteriores, y como se ha observado ya en otras parcelas, se observa en general una reducción del nivel de inmisión de amoníaco que se ve reemplazado por el óxido de nitrógeno como el contaminante más abundante en los últimos años si bien sigue una tendencia creciente a lo largo del último tramo de la serie, así como un cierto incremento de los niveles de dióxido de azufre desde los mínimos de 2008, con niveles comparativamente bajos durante los últimos tres años. No se han superado los umbrales de referencia en ningún caso a lo largo del último año de evaluación salvo algún caso puntual de afección a líquenes por amoníaco. Como en otras parcelas, se ha registrado también una reducción en los niveles de ozono, alcanzándose el mínimo de la serie histórica durante el último año, siempre por debajo del valor medio de la Red.

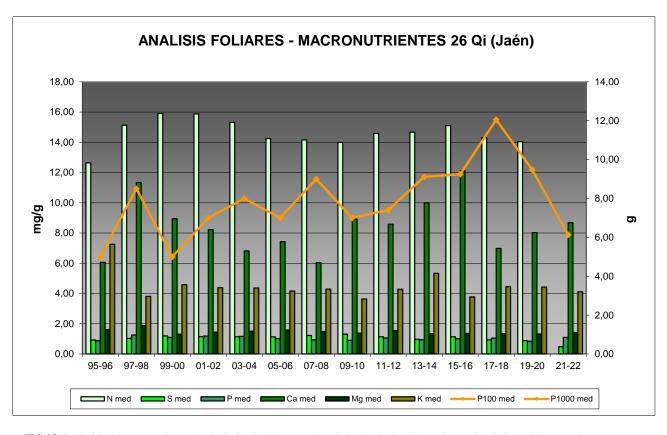
#### 7. Análisis foliar.

El objetivo del análisis foliar es, en concordancia con las especificaciones de las redes europeas, estimar el estado nutricional del arbolado y el impacto de los contaminantes atmosféricos en los ecosistemas forestales; así como la detección de tendencias temporales y sus patrones geográficos de distribución y con ello contribuir al conocimiento y cuantificación del estado de los bosques en Europa.

## 7.1. Análisis Macronutrientes.

Los macronutrientes analizados han registrado los siguientes valores:

TABLA 28: Análisis foliares por campaña bianual de muestreo para la parcela y comparación con el resto de las 54 parcelas de la Red de Nivel II pobladas con la misma especie y la media de la especie. A partir de 2009-2010 sólo se miden las 14 parcelas instrumentadas.


|           |               |           | Peso seco        | N     | <b>IACRO</b> | NUTRIE | NTES (r | ng/g MS | )    | C   |
|-----------|---------------|-----------|------------------|-------|--------------|--------|---------|---------|------|-----|
| Año       | Parcela       | Provincia | (g) 100<br>hojas | N     | S            | P      | Ca      | Mg      | K    | (%) |
|           | 01 Qi         | Santander | 7,00             | 17,24 | 1,12         | 0,99   | 7,50    | 1,22    | 5,22 |     |
|           | 06 Qi         | Castellón | 7,00             | 17,35 | 1,39         | 0,99   | 5,90    | 1,27    | 6,40 |     |
|           | 07 Qi         | Cáceres   | 6,00             | 12,90 | 0,87         | 0,74   | 5,94    | 1,47    | 4,82 |     |
|           | 12 Qi         | Badajoz   | 7,00             | 15,87 | 1,11         | 0,88   | 6,60    | 1,65    | 4,35 |     |
|           | 16 Qi         | Sevilla   | 7,00             | 13,82 | 0,94         | 0,81   | 7,32    | 1,52    | 5,84 |     |
|           | 18 Qi         | Barcelona | 5,00             | 16,10 | 1,23         | 0,97   | 7,72    | 1,68    | 4,50 |     |
| 1995-1996 | 26 Qi         | Jaén      | 5,00             | 12,64 | 0,92         | 0,88   | 6,06    | 1,61    | 7,26 |     |
|           | 28 Qi         | Granada   | 5,00             | 14,35 | 1,07         | 1,06   | 6,65    | 1,56    | 5,03 |     |
|           | 32 Qi         | Burgos    | 5,00             | 14,83 | 1,08         | 0,92   | 6,05    | 0,75    | 6,12 |     |
|           | 35 Qi         | Zamora    | 6,00             | 15,28 | 1,15         | 0,73   | 4,47    | 1,10    | 6,14 |     |
|           | 40 Qi         | Baleares  | 6,00             | 16,15 | 1,40         | 1,21   | 9,38    | 1,28    | 5,68 |     |
|           | 49 Qi         | Toledo    | 6,00             | 12,82 | 0,81         | 0,69   | 5,97    | 2,03    | 5,34 |     |
|           | Q.ilex        | Red       | 6,00             | 14,95 | 1,09         | 0,91   | 6,63    | 1,43    | 5,56 |     |
|           | 01 Qi         | Santander | 9,50             | 14,95 | 1,09         | 1,12   | 8,88    | 1,51    | 4,55 |     |
|           | 06 Qi         | Castellón | 7,50             | 13,75 | 1,20         | 0,96   | 11,60   | 1,11    | 6,35 |     |
|           | 07 Qi         | Cáceres   | 6,00             | 13,18 | 0,95         | 1,04   | 8,28    | 1,58    | 3,26 |     |
|           | 12 Qi         | Badajoz   | 7,00             | 14,54 | 1,04         | 0,79   | 8,08    | 1,43    | 4,08 |     |
|           | 16 Qi         | Sevilla   | 9,50             | 13,05 | 0,91         | 0,87   | 9,48    | 1,47    | 4,11 |     |
| 1997-1998 | 18 Qi         | Barcelona | 7,00             | 13,41 | 1,10         | 0,82   | 7,93    | 1,49    | 5,21 |     |
|           | 26 Qi         | Jaén      | 8,50             | 15,13 | 1,04         | 1,26   | 11,34   | 1,87    | 3,82 |     |
|           | 28 Qi         | Granada   | 6,50             | 11,99 | 0,86         | 0,85   | 8,71    | 2,08    | 4,77 |     |
|           | 32 Qi         | Burgos    | 6,00             | 15,07 | 1,19         | 1,10   | 7,89    | 0,86    | 5,85 |     |
|           | 35 Qi         | Zamora    | 5,50             | 12,98 | 1,14         | 0,89   | 6,64    | 1,17    | 4,08 |     |
|           | 40 Qi         | Baleares  | 6,50             | 13,03 | 1,09         | 1,02   | 12,69   | 1,51    | 5,84 |     |
|           | 49 Qi         | Toledo    | 7,50             | 14,44 | 1,01         | 0,97   | 9,18    | 1,58    | 3,31 |     |
|           | Q.ilex        | Red       | 7,25             | 13,79 | 1,05         | 0,97   | 9,22    | 1,47    | 4,60 |     |
|           | 01 Qi         | Santander | 7,00             | 16,38 | 1,17         | 1,23   | 6,62    | 1,37    | 4,52 |     |
|           | 06 Qi         | Castellón | 8,00             | 15,74 | 1,16         | 1,06   | 5,49    | 1,32    | 5,69 |     |
|           | 07 Qi         | Cáceres   | 5,00             | 14,03 | 1,00         | 1,05   | 6,34    | 1,49    | 3,64 |     |
|           | 12 Qi         | Badajoz   | 6,00             | 15,27 | 1,11         | 0,94   | 6,83    | 1,49    | 4,89 |     |
|           | 16 Qi         | Sevilla   | 8,00             | 14,55 | 1,09         | 1,13   | 10,33   | 1,41    | 4,55 |     |
|           | 18 Qi         | Barcelona | 6,00             | 15,42 | 1,30         | 0,93   | 7,57    | 1,66    | 4,56 |     |
| 1999-2000 | 26 Qi         | Jaén      | 5,00             | 15,91 | 1,20         | 1,10   | 8,94    | 1,31    | 4,58 |     |
|           | 28 Qi         | Granada   | 6,00             | 12,63 | 1,17         | 0,90   | 10,26   | 1,99    | 4,19 |     |
|           | 32 Qi         | Burgos    | 5,00             | 14,48 | 1,04         | 0,86   | 4,85    | 0,78    | 4,34 |     |
|           | 35 Qi         | Zamora    | 5,00             | 14,42 | 1,07         | 0,88   | 4,30    | 0,97    | 4,23 |     |
|           | 40 Qi         | Baleares  | 7,00             | 14,18 | 1,20         | 0,89   | 10,43   | 0,98    | 4,83 |     |
|           | 49 Qi         | Toledo    | 9,00             | 14,12 | 0,98         | 0,91   | 4,03    | 1,24    | 4,03 |     |
|           | Q.ilex        | Red       | 6,42             | 14,76 | 1,12         | 0,99   | 7,17    | 1,33    | 4,50 |     |
|           | 01 Qi         | Santander | 7,00             | 16,29 | 1,19         | 1,15   | 6,58    | 1,38    | 5,00 |     |
|           | 06 Qi         | Castellón | 6,00             | 16,39 | 1,19         | 1,00   | 6,60    | 1,26    | 5,76 |     |
|           | 07 Qi         | Cáceres   | 6,00             | 14,62 | 1,09         | 1,00   | 7,23    | 1,48    | 2,83 |     |
|           | 12 Qi         | Badajoz   | 6,00             | 15,62 | 1,17         | 0,94   | 6,14    | 1,60    | 4,44 |     |
|           | 16 Qi         | Sevilla   | 9,00             | 15,56 | 1,14         | 1,15   | 7,32    | 1,25    | 4,51 |     |
| 2001-2002 | 18 Qi         | Barcelona | 5,00             | 14,94 | 1,14         | 0,98   | 5,96    | 1,36    | 5,11 |     |
|           | 26 Qi         | Jaén      | 7,00             | 15,88 | 1,15         | 1,19   | 8,23    | 1,45    | 4,39 |     |
|           | 28 Qi         | Granada   | 6,00             | 13,83 | 1,13         | 0,98   | 7,05    | 1,43    | 4,91 |     |
|           | 32 Qi         | Burgos    | 6,00             | 15,05 | 1,14         | 0,98   | 5,70    | 0,76    | 5,99 |     |
|           | 35 Qi         | Zamora    | 6,00             | 15,26 | 1,14         | 0,98   | 5,03    | 0,76    | 5,43 |     |
|           | 22 <b>Q</b> I | Lailiola  | 0,00             | 15,20 | 1,40         | 0,07   | 2,03    | 0,00    | 5,43 |     |

|           |         |             | Peso seco        | N     | <b>IACRO</b>     | NUTRIE | ENTES (1            | ng/g MS | )    | С     |
|-----------|---------|-------------|------------------|-------|------------------|--------|---------------------|---------|------|-------|
| Año       | Parcela | Provincia   | (g) 100<br>hojas | N     | S                | P      | Ca                  | Mg      | K    | (%)   |
|           | 40 Qi   | Baleares    | 6,00             | 14,72 | 1,30             | 0,97   | 10,34               | 1,13    | 4,17 |       |
|           | 49 Qi   | Toledo      | 9,00             | 14,96 | 1,12             | 0,88   | 6,59                | 1,23    | 3,78 |       |
|           | Q.ilex  | Red         | 6,58             | 15,26 | 1,20             | 1,01   | 6,90                | 1,29    | 4,69 |       |
|           | 01 Qi   | Santander   | 11,00            | 16,11 | 1,20             | 1,14   | 6,08                | 1,52    | 4,88 |       |
| -         | 06 Qi   | Castellón   | 12,00            | 17,47 | 1,48             | 1,17   | 6,08                | 1,53    | 6,75 |       |
|           | 07 Qi   | Cáceres     | 7,00             | 14,52 | 1,10             | 1,11   | 6,20                | 1,50    | 3,79 |       |
| -         | 12 Qi   | Badajoz     | 8,00             | 15,81 | 1,17             | 1,05   | 6,08                | 1,54    | 4,70 |       |
|           | 16 Qi   | Sevilla     | 11,00            | 15,16 | 1,07             | 1,15   | 7,00                | 1,44    | 4,56 |       |
|           | 18 Qi   | Barcelona   | 9,00             | 15,33 | 1,22             | 0,92   | 5,95                | 1,75    | 5,16 |       |
| 2003-2004 | 26 Qi   | Jaén        | 8,00             | 15,31 | 1,14             | 1,17   | 6,82                | 1,51    | 4,37 |       |
|           | 28 Qi   | Granada     | 10,00            | 12,88 | 1,09             | 1,08   | 6,40                | 1,71    | 5,20 |       |
|           | 32 Qi   | Burgos      | 7,00             | 17,05 | 1,26             | 1,18   | 6,13                | 1,05    | 6,43 |       |
| -         | 35 Qi   | Zamora      | 8,00             | 16,85 | 1,33             | 1,00   | 4,41                | 1,01    | 6,04 |       |
| -         | 40 Qi   | Baleares    | 15,00            | 16,52 | 1,29             | 1,14   | 7,67                | 1,34    | 4,96 |       |
| -         | 49 Qi   | Toledo      | 10,00            | 14,65 | 1,08             | 1,01   | 5,26                | 1,36    | 4,01 |       |
| -         | Q.ilex  | Red         | 9,67             | 15,64 | 1,20             | 1,09   | 6,17                | 1,44    | 5,07 |       |
|           | 01 Qi   | Santander   | 7,00             | 15,40 | 1,29             | 0,90   | 7,98                | 1,65    | 3,81 |       |
|           | 06 Qi   | Castellón   | 8,00             | 17,86 | 1,46             | 0,90   | 7,93                | 1,12    | 5,75 |       |
|           | 07 Qi   | Cáceres     | 7,00             | 13,38 | 1,19             | 0,90   | 7,74                | 1,62    | 3,43 |       |
| -         | 12 Qi   | Badajoz     | 7,50             | 14,93 | 1,17             | 0,92   | 8,01                | 1,87    | 3,90 |       |
| -         | 16 Qi   | Sevilla     | 8,50             | 14,60 | 1,03             | 0,97   | 8,43                | 1,41    | 3,97 |       |
| -         | 18 Qi   | Barcelona   | 8,50             | 14,29 | 1,26             | 0,87   | 5,93                | 1,45    | 4,72 |       |
| 2005-2006 | 26 Qi   | Jaén        | 7,00             | 14,25 | 1,13             | 1,03   | 7,43                | 1,58    | 4,17 |       |
|           | 28 Qi   | Granada     | 10,00            | 10,95 | 0,95             | 0,84   | 8,29                | 1,92    | 3,77 |       |
|           | 32 Qi   | Burgos      | 6,50             | 14,73 | 1,22             | 0,75   | 8,03                | 0,73    | 5,85 |       |
| -         | 35 Qi   | Zamora      | 6,00             | 13,96 | 1,42             | 0,65   | 5,22                | 0,74    | 4,43 |       |
| -         | 40 Qi   | Baleares    | 10,50            | 15,52 | 1,34             | 0,91   | 10,47               | 1,26    | 3,98 |       |
|           | 49 Qi   | Toledo      | 7,50             | 13,99 | 1,19             | 0,82   | 6,38                | 1,27    | 3,23 |       |
|           | Q.ilex  | Red         | 7,73             | 14,49 | 1,22             | 0,87   | 7,61                | 1,37    | 4,20 |       |
|           | 01 Qi   | Santander   | 8,00             | 15,24 | 1,20             | 0,80   | 7,78                | 1,57    | 3,88 |       |
| -         | 06 Qi   | Castellón   | 11,00            | 14,97 | 1,14             | 0,72   | 6,32                | 1,10    | 5,92 |       |
| -         | 07 Qi   | Cáceres     | 7,50             | 13,06 | 1,54             | 0,84   | 7,73                | 1,46    | 3,50 |       |
| -         | 12 Qi   | Badajoz     | 9,00             | 16,64 | 1,47             | 0,85   | 6,88                | 1,38    | 4,63 |       |
| -         | 16 Qi   | Sevilla     | 10,50            | 14,35 | 1,10             | 0,92   | 9,31                | 1,46    | 3,93 |       |
| -         | 18 Qi   | Barcelona   | 8,00             | 13,50 | 1,31             | 0,74   | 6,66                | 1,03    | 4,43 |       |
| 2007-2008 | 26 Qi   | Jaén        | 9,00             | 14,16 | 1,22             | 0,93   | 6,04                | 1,49    | 4,29 |       |
| 2007 2000 | 28 Qi   | Granada     | 10,00            | 12,14 | 1,06             | 0,76   | 5,19                | 1,83    | 4,66 |       |
| -         | 32 Qi   | Burgos      | 7,00             | 14,88 | 1,25             | 0,69   | 8,60                | 0,58    | 4,54 |       |
| -         | 35 Qi   | Zamora      | 5,00             | 13,75 | 1,53             | 0,55   | 5,52                | 0,58    | 4,45 |       |
| -         | 40 Qi   | Baleares    | 8,00             | 15,22 | 1,42             | 0,81   | 4,92                | 2,02    | 3,97 |       |
| -         | 49 Qi   | Toledo      | 11,00            | 13,68 | 1,29             | 0,65   | 6,26                | 1,13    | 3,54 |       |
| -         | Q.ilex  | Red         | 8,53             | 14,38 | 1,31             | 0,76   | 7,01                | 1,25    | 4,22 |       |
|           | 06 Qi   | Castellón   | 5,00             | 16,20 | 1,29             | 0,97   | 7,28                | 1,27    | 6,17 |       |
| 2009-2010 | 26 Qi   | Jaén        | 7,00             | 14,00 | 1,32             | 0,97   | 8,93                | 1,38    | 3,64 |       |
| 2007-2010 | Q.ilex  | Red         | 6,33             | 14,73 | 1,31             | 0,90   | 8,38                | 1,34    | 4,48 |       |
|           | 06 Qi   | Castellón   | 7,64             | 15,55 | 1,31             | 0,92   | 8,23                | 1,21    | 6,11 |       |
| 2011-2012 | 26 Qi   |             | *                | 13,55 |                  | 1,06   | 8,23<br><b>8,59</b> | 1,54    | 4,28 |       |
| 2011-2012 | Q.ilex  | Jaén<br>Red | <b>7,41</b> 7,53 | 15,07 | <b>1,14</b> 1,21 | 1,00   |                     | 1,38    | 5,20 |       |
|           | ~       |             |                  | -     |                  |        | 8,41                |         |      | 51.24 |
| 2012 2014 | 06 Qi   | Cástellón   | 6,88             | 22,93 | 1,04             | 0,68   | 9,06                | 1,10    | 6,49 | 51,34 |
| 2013-2014 | 07 Qi   | Cáceres     | 13,92            | 15,62 | 1,01             | 0,93   | 6,87                | 1,28    | 5,44 | 50,06 |
|           | 26 Qi   | Jaén        | 9,11             | 14,67 | 0,97             | 0,94   | 10,00               | 1,35    | 5,33 | 50,48 |



|           |         |           | Peso seco        | N     | <b>IACRO</b> | NUTRIE | NTES (r | ng/g MS | )    | C     |
|-----------|---------|-----------|------------------|-------|--------------|--------|---------|---------|------|-------|
| Año       | Parcela | Provincia | (g) 100<br>hojas | N     | S            | P      | Ca      | Mg      | K    | (%)   |
|           | Q.ilex  | Red       | 10,59            | 16,70 | 1,00         | 0,89   | 8,56    | 1,27    | 5,61 | 50,48 |
|           | 06 Qi   | Castellón | 6,50             | 16,65 | 1,34         | 0,95   | 8,50    | 1,27    | 6,45 | 50,52 |
| 2015-2016 | 07 Qi   | Cáceres   | 13,20            | 12,67 | 0,94         | 0,97   | 9,82    | 1,16    | 4,19 | 49,49 |
| 2015-2010 | 26 Qi   | Jaén      | 9,25             | 15,10 | 1,14         | 1,01   | 12,11   | 1,36    | 3,78 | 50,22 |
|           | Q.ilex  | Red       | 10,28            | 14,44 | 1,10         | 0,98   | 10,47   | 1,26    | 4,48 | 49,99 |
|           | 06 Qi   | Castellón | 8,42             | 15,97 | 0,99         | 0,83   | 8,85    | 1,19    | 5,87 | 50,54 |
| 2017-2018 | 07 Qi   | Cáceres   | 11,11            | 12,81 | 0,90         | 0,91   | 9,61    | 1,45    | 3,96 | 49,99 |
| 2017-2018 | 26 Qi   | Jaén      | 12,06            | 14,31 | 0,93         | 1,05   | 6,99    | 1,35    | 4,46 | 49,43 |
|           | Q.ilex  | Red       | 10,67            | 13,97 | 0,93         | 0,92   | 8,76    | 1,36    | 4,56 | 49,99 |
|           | 06 Qi   | Castellón | 7,11             | 12,50 | 1,21         | 0,93   | 10,35   | 1,21    | 4,62 | 50,87 |
| 2019-2020 | 07 Qi   | Cáceres   | 10,30            | 11,65 | 0,81         | 0,68   | 7,82    | 1,19    | 3,03 | 50,11 |
| 2019-2020 | 26 Qi   | Jaén      | 9,47             | 14,04 | 0,89         | 0,85   | 8,03    | 1,32    | 4,42 | 49,75 |
|           | Q.ilex  | Red       | 9,33             | 12,78 | 0,92         | 0,80   | 8,41    | 1,24    | 3,91 | 50,12 |
|           | 06 Qi   | Castellón | 6,71             |       | 0,42         | 0,87   | 13,05   | 1,03    | 5,23 |       |
| 2021-2022 | 07 Qi   | Cáceres   | 9,51             |       | 0,38         | 0,92   | 9,69    | 1,41    | 3,83 |       |
| 2021-2022 | 26 Qi   | Jaén      | 6,13             |       | 0,48         | 1,10   | 8,68    | 1,42    | 4,11 |       |
|           | Q.ilex  | Red       | 7,45             | _     | 0,43         | 0,96   | 10,47   | 1,29    | 4,39 |       |

En rojo, análisis de azufre que superan el valor de referencia para la especie, 0,959 mg/g, lo que indica incidencia de la contaminación atmosférica por compuestos sulfurosos. Fuente: (2001) Peña Martínez, J.M. El Estudio del Impacto de la Contaminación Atmosférica en los Bosques. Ministerio de Medio Ambiente. Dirección General de Conservación de la Naturaleza. Serie técnica.



 $\textbf{FIG 25} : Evolución \ de \ macronutrientes \ (mg/g \ eje \ izquierdo) \ y \ peso \ de \ acículas \ (g \ eje \ derecho) \ en \ la \ parcela \ a \ lo \ largo \ de \ las \ sucesivas \ campañas.$ 

# 7.2. Análisis Micronutrientes.

TABLA 29: Análisis foliares por campaña bianual de muestreo para la parcela y comparación con el resto de las 54 parcelas de la Red de Nivel II pobladas con la misma especie y la media de la especie. A partir de 2009-2010 sólo se miden las 14 parcelas instrumentadas.

|           |                |                      |         | MICRON         | UTRIENTES (       | ug/g MS)         |                                       |
|-----------|----------------|----------------------|---------|----------------|-------------------|------------------|---------------------------------------|
| Año       | Parcela        | Provincia            | Na      | Zn             | Mn                | Fe               | Cu                                    |
|           | 01 Qi          | Santander            |         | 32,00          | 3443,00           | 85,00            |                                       |
|           | 06 Qi          | Castellón            |         | 41,00          | 640,00            | 355,00           |                                       |
|           | 07 Qi          | Cáceres              |         | 25,00          | 2345,00           | 358,00           |                                       |
|           | 12 Qi          | Badajoz              |         | 24,00          | 1024,00           | 344,00           |                                       |
|           | 16 Qi          | Sevilla              |         | 25,00          | 1068,00           | 329,00           |                                       |
|           | 18 Qi          | Barcelona            |         | 35,00          | 4416,00           | 568,00           |                                       |
| 1995-1996 | 26 Qi          | Jaén                 |         | 22,00          | 620,00            | 240,00           |                                       |
|           | 28 Qi          | Granada              |         | 27,00          | 1595,00           | 761,00           |                                       |
|           | 32 Qi          | Burgos               |         | 24,00          | 1934,00           | 132,00           |                                       |
|           | 35 Qi          | Zamora               |         | 29,00          | 5906,00           | 444,00           |                                       |
|           | 40 Qi          | Baleares             |         | 31,00          | 1494,00           | 635,00           |                                       |
|           | 49 Qi          | Toledo               |         | 19,00          | 2364,00           | 230,00           |                                       |
|           | Q.ilex         | Red                  |         | 27,83          | 2237,42           | 373,42           |                                       |
|           | 01 Qi          | Santander            | 2197,00 | 31,50          | 1505,50           | 71,00            |                                       |
|           | 06 Qi          | Castellón            | 2726,50 | 33,50          | 563,00            | 212,00           |                                       |
|           | 07 Qi          | Cáceres              | 2641,50 | 20,50          | 1847,00           | 145,00           |                                       |
|           | 12 Qi          | Badajoz              | 3170,00 | 22,50          | 607,00            | 355,00           |                                       |
|           | 16 Qi          | Sevilla              | 3140,50 | 23,00          | 868,00            | 220,50           |                                       |
|           | 18 Qi          | Barcelona            | 102,00  | 28,00          | 2074,00           | 143,50           |                                       |
| 1997-1998 | 26 Qi          | Jaén                 | 78,00   | 29,00          | 739,50            | 177,50           |                                       |
|           | 28 Qi          | Granada              | 77,50   | 34,50          | 1039,50           | 293,00           |                                       |
|           | 32 Qi          | Burgos               | 56,00   | 42,00          | 1637,00           | 196,00           |                                       |
|           | 35 Qi          | Zamora               | 173,00  | 27,00          | 4043,50           | 103,00           |                                       |
|           | 40 Qi          | Baleares             | 999,50  | 32,50          | 551,00            | 211,50           |                                       |
|           | 49 Qi          | Toledo               | 254,50  | 30,50          | 2243,00           | 126,00           |                                       |
|           | Q.ilex         | Red                  | 1301,33 | 29,54          | 1476,50           | 187,83           |                                       |
|           | 06 Qi          | Castellón            | 2222,00 | 25,79          | 530,57            | 104,21           | 3,66                                  |
| -         | 07 Qi          | Cáceres              |         | 19,73          | 1068,97           | 83,45            | 3,54                                  |
| 2013-2014 | 26 Qi          | Jaén                 |         | 24,74          | 699,64            | 144,79           | 3,99                                  |
|           | Q.ilex         | Red                  |         | 22,95          | 813,56            | 112,14           | 3,75                                  |
|           | 06 Qi          | Castellón            |         | 35,68          | 825,39            | 184,39           | 5,51                                  |
| -         | 07 Qi          | Cáceres              |         | 17,58          | 1959,46           | 158,05           | 3,28                                  |
| 2015-2016 | 26 Qi          | Jaén                 |         | 27,19          | 843,91            | 177,58           | 6,63                                  |
| -         | Q.ilex         | Red                  |         | 25,04          | 1286,43           | 171,13           | 5,06                                  |
|           | 06 Qi          | Castellón            |         | 32,24          | 416,27            | 133,38           | 3,92                                  |
|           | 07 Qi          | Cáceres              |         | 21,62          | 1928,00           | 157,52           | 3,13                                  |
| 2017-2018 | 26 Qi          | Jaén                 |         | 23,73          | 560,50            | 115,32           | 4,53                                  |
|           | Q.ilex         | Red                  |         | 24,80          | 1208,19           | 140,93           | 3,68                                  |
|           |                | +                    |         |                |                   |                  | · · · · · · · · · · · · · · · · · · · |
|           | 06 Qi<br>07 Qi | Castellón<br>Cáceres |         | 27,94<br>16,18 | 512,58<br>1420,16 | 125,62<br>121,71 | 4,34<br>2,65                          |
| 2019-2020 |                |                      |         | 25,51          |                   |                  |                                       |
|           | 26 Qi          | Jaén<br>Red          |         | 22,26          | 576,98            | 173,45           | <b>4,61</b> 3,77                      |
|           | Q.ilex         | +                    |         |                | 901,37            | 143,19           |                                       |
|           | 06 Qi          | Castellón            |         | 39,18          | 706,04            | 332,36           | 5,00                                  |
| 2021-2022 | 07 Qi          | Cáceres              |         | 19,67          | 1555,09           | 154,32           | 3,85                                  |
|           | 26 Qi          | Jaén                 |         | 27,99          | 708,54            | 277,84           | 5,06                                  |
|           | Q.ilex         | Red                  |         | 28,95          | 989,89            | 254,84           | 4,64                                  |

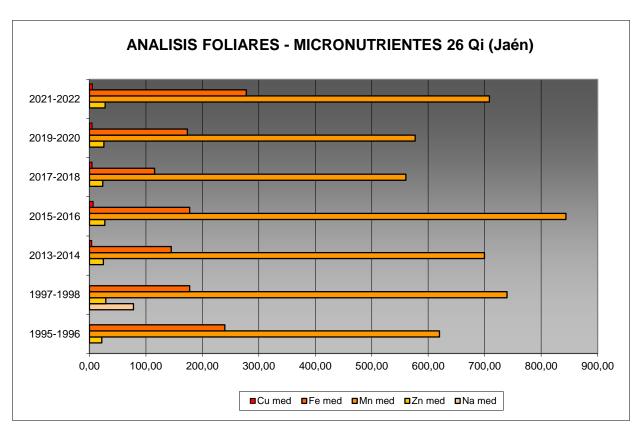



FIG 26: Evolución de micronutrientes (μg/g) en la parcela a lo largo de las sucesivas campañas

## 7.3. Interpretación de resultados.

Por lo que respecta a los análisis foliares efectuados en la parcela, cabe concluir:

A la vista de los resultados obtenidos en los análisis de la muestra foliar de la parcela 26Qi podemos hacer las siguientes observaciones tanto de la parcela tratada individualmente como respecto a la media interanual del resto de parcelas con la encina como especie dominante:

El **peso** medio de la muestra analizada de la parcela tiene tendencia ascendente a lo largo de la serie, si bien se reduce apreciablemente durante la última revisión, en que con 6 g/100 hojas se alcanza uno de los menores valores de la serie, reducción esta que venía advirtiéndose desde el máximo de hace dos campañas.

Respecto a los *macronutrientes* se mantienen bastante estables a lo largo de la última campaña; los valores de **nitrógeno** obtenidos para la parcela son bastante homogéneos, situándose en el entorno de los 14 mg/g, sin grandes fluctuaciones entre los distintos años. Por lo que se refiere al **azufre** se reduce apreciablemente hasta alcanzar el mínimo de la serie en una tendencia ya apuntada el año anterior, por debajo de 0,5 mg/g, alejado por tanto del valor patrón o de referencia de la especie, situado en torno a 0,959 mg/g. El **fósforo** experimenta un ligero incremento en la presente campaña, mientras el **magnesio y calcio** presentan niveles algo superiores a los del año anterior y por el contrario el **potasio** se reduce ligeramente. El

contenido en **carbono** de la muestra, analizado desde fechas más recientes, se ha situado en el entorno del 50%.

Los *micronutrientes* se han analizado con menos regularidad y no siempre todos ellos, lo que dificulta su seguimiento. Mantienen un nivel por lo general estable a lo largo de los años. En la presente revisión se ha advertido un ligero aumento en los cuatro elementos analizados: zinc, cobre, manganeso y hierro, tal como ya ocurriera en la campaña precedente.

#### 8. Desfronde.

Con periodicidad mensual se ha recogido el desfronde o litterfall en la parcela mediante captadores normalizados que recogen la caída correspondiente a 1 m² de superficie. La muestra así tomada se divide en sus principales componentes (hojas, ramillas de diámetro inferior a 2 cm y otras, que incluyen frutos, líquenes, musgos,...) y se analiza en el laboratorio.

Se presentan a continuación los resultados obtenidos desde 2010; haciéndose la salvedad al igual que en casos anteriores, de que en 2012 se ha muestreado el periodo enero-julio, mientras que en 2014 los análisis corresponden al periodo mayo-diciembre.

#### 8.1. Análisis Macronutrientes.

TABLA 30: Resultados medios del análisis de desfronde en sus distintas fracciones. Aporte anual en kg/ha; porcentaje de carbono y contenido en mg/g de materia seca de nitrógeno, azufre, fósforo, calcio, magnesio y potasio.

| Año  | Fracción | Peso<br>(kg/ha) | C<br>(%) | N<br>(mg/g) | S<br>(mg/g) | P<br>(mg/g) | Ca<br>(mg/g) | Mg<br>(mg/g) | K<br>(mg/g) |
|------|----------|-----------------|----------|-------------|-------------|-------------|--------------|--------------|-------------|
|      | Hojas    | 1.080           | 50,95    | 10,62       | 0,82        | 0,68        | 9,53         | 1,07         | 3,26        |
| 2005 | Ramillas | 332             | 49,21    | 9,63        | 0,69        | 0,75        | 22,04        | 1,14         | 2,97        |
|      | Otras    | 570             | 48,53    | 16,26       | 1,23        | 1,01        | 9,82         | 1,10         | 4,22        |
|      | Hojas    | 911             | 51,39    | 9,81        | 0,82        | 0,62        | 9,34         | 1,00         | 2,81        |
| 2006 | Ramillas | 258             | 50,03    | 8,65        | 0,66        | 0,73        | 16,49        | 1,08         | 3,88        |
|      | Otras    | 775             | 49,02    | 15,68       | 1,20        | 1,06        | 8,89         | 1,08         | 3,84        |
|      | Hojas    | 1.700           | 52,61    | 10,25       | 0,85        | 0,69        | 8,53         | 2,83         | 2,74        |
| 2007 | Ramillas | 691             | 51,32    | 8,26        | 0,61        | 0,80        | 15,60        | 4,15         | 3,11        |
|      | Otras    | 1.080           | 50,26    | 18,38       | 1,34        | 1,51        | 9,35         | 3,60         | 4,69        |
|      | Hojas    | 1.150           | 51,77    | 10,18       | 0,81        | 0,71        | 9,35         | 1,02         | 3,24        |
| 2008 | Ramillas | 320             | 50,86    | 7,72        | 0,55        | 0,84        | 18,61        | 1,19         | 3,81        |
|      | Otras    | 530             | 49,06    | 22,22       | 1,47        | 1,44        | 10,47        | 1,26         | 3,82        |
|      | Hojas    | 1.780           | 51,85    | 9,59        | 0,86        | 0,62        | 13,03        | 0,94         | 2,87        |
| 2009 | Ramillas | 815             | 50,32    | 7,07        | 0,52        | 0,82        | 14,03        | 1,11         | 4,39        |
|      | Otras    | 999             | 49,88    | 15,45       | 1,33        | 1,08        | 8,76         | 1,15         | 5,39        |
|      | Hojas    | 1.450           | 51,14    | 9,91        | 0,90        | 0,64        | 9,55         | 1,00         | 2,72        |
| 2010 | Ramillas | 1.022           | 51,15    | 8,48        | 0,71        | 0,83        | 20,29        | 1,29         | 4,03        |
|      | Otras    | 974             | 49,79    | 15,09       | 1,48        | 0,99        | 9,96         | 1,16         | 5,00        |
|      | Hojas    | 1.258           | 51,56    | 9,86        | 0,84        | 0,65        | 8,60         | 3,12         | 2,43        |
| 2011 | Ramillas | 455             | 50,26    | 8,40        | 0,62        | 0,80        | 15,68        | 4,04         | 3,34        |
|      | Otras    | 672             | 49,25    | 16,97       | 1,34        | 1,11        | 8,57         | 2,81         | 3,84        |
|      | Hojas    | 1.075           | 51,60    | 10,01       | 0,88        | 0,62        | 10,42        | 1,72         | 2,60        |
| 2012 | Ramillas | 518             | 50,41    | 8,02        | 0,61        | 0,83        | 16,32        | 2,06         | 3,94        |
|      | Otras    | 491             | 49,51    | 17,95       | 1,51        | 1,21        | 9,91         | 1,66         | 4,59        |

| A ~ - | E        | Peso    | C     | N      | S      | P      | Ca     | Mg     | K      |
|-------|----------|---------|-------|--------|--------|--------|--------|--------|--------|
| Año   | Fracción | (kg/ha) | (%)   | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) |
|       | Hojas    | 987     | 50,63 | 11,22  | 0,71   | 0,53   | 8,37   | 1,07   | 2,93   |
| 2014  | Ramillas | 73      |       |        |        |        |        |        |        |
|       | Otras    | 537     |       |        |        |        |        |        |        |
|       | Hojas    | 1.765   | 48,25 | 8,96   | 0,70   | 0,65   | 10,81  | 0,98   | 2,87   |
| 2015  | Ramillas | 361     |       |        |        |        |        |        |        |
|       | Otras    | 961     | 45,51 | 16,85  | 1,14   | 1,05   | 5,68   | 1,12   | 6,16   |
|       | Hojas    | 1.239   | 50,68 | 10,79  | 0,96   | 0,73   | 12,52  | 1,09   | 2,62   |
| 2016  | Ramillas | 231     |       |        |        |        |        |        |        |
|       | Otras    | 853     | 47,87 | 17,39  | 0,56   | 0,41   | 4,23   | 0,42   | 1,14   |
|       | Hojas    | 1.927   | 48,55 | 9,07   | 0,66   | 0,70   | 9,56   | 1,02   | 3,04   |
| 2017  | Ramillas | 318     |       |        |        |        |        |        |        |
|       | Otras    | 866     |       |        |        |        |        |        |        |
|       | Hojas    | 1.334   | 49,91 | 8,45   | 0,91   | 0,68   | 8,38   | 1,09   | 2,66   |
| 2018  | Ramillas | 359     |       |        |        |        |        |        |        |
|       | Otras    | 759     |       |        |        |        |        |        |        |
|       | Hojas    | 1.286   | 49,90 | 7,69   | 0,76   | 0,68   | 9,03   | 1,08   | 3,06   |
| 2019  | Ramillas | 685     |       |        |        |        |        |        |        |
|       | Otras    | 697     |       |        |        |        |        |        |        |
|       | Hojas    | 1.600   |       |        | 0,78   | 0,35   | 8,70   | 1,02   | 3,48   |
| 2020  | Ramillas | 252     |       |        |        |        |        |        |        |
|       | Otras    | 497     |       |        |        |        |        |        |        |
|       | Hojas    | 2.129   |       |        | 1,10   | 1,02   | 9,52   | 1,56   | 3,22   |
| 2021  | Ramillas | 282     |       |        |        |        |        |        |        |
|       | Otras    | 687     |       |        |        |        |        |        |        |
|       | Hojas    | 1.417   | 50,77 | 9,74   | 0,84   | 0,66   | 9,70   | 1,35   | 2,91   |
| Media | Ramillas | 436     | 50,44 | 8,28   | 0,62   | 0,80   | 17,38  | 2,01   | 3,68   |
|       | Otras    | 747     | 48,87 | 17,22  | 1,26   | 1,09   | 8,56   | 1,54   | 4,27   |

# 8.2. Análisis Micronutrientes.

TABLA 30b: Resultados medios del análisis de desfronde en sus distintas fracciones. Contenido en µg/g de materia seca de zinc, manganeso, hierro, cobre, plomo, cobalto, niquel y cadmio (ng/g)

| Año  | Fracción | Zn<br>(μg/g) | Mn<br>(μg/g) | Fe<br>(µg/g) | Cu<br>(µg/g) | Pb<br>(μg/g) | Co<br>(µg/g) | Ni<br>(μg/g) | Cd<br>(ng/g) |
|------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|      | Hojas    | 30,32        | 676,49       | 141,85       | 3,66         |              |              |              |              |
| 2014 | Ramillas |              |              |              |              |              |              |              |              |
|      | Otras    |              |              |              |              |              |              |              |              |
|      | Hojas    | 35,30        | 979,29       | 173,90       | 3,73         |              |              |              |              |
| 2015 | Ramillas |              |              |              |              |              |              |              |              |
|      | Otras    | 22,04        | 281,00       | 155,48       | 9,12         |              |              |              |              |
|      | Hojas    | 41,57        | 1150,28      | 260,45       | 4,75         |              |              |              |              |
| 2016 | Ramillas |              |              |              |              |              |              |              |              |
|      | Otras    | 1375,88      | 181,58       | 231,33       | 2,92         |              |              |              |              |
|      | Hojas    | 32,61        | 950,24       | 362,99       | 4,25         |              |              |              |              |
| 2017 | Ramillas |              |              |              |              |              |              |              |              |
|      | Otras    |              |              |              |              |              |              |              |              |
|      | Hojas    | 33,02        | 828,67       | 181,74       | 7,06         |              |              |              |              |
| 2018 | Ramillas |              | ·            | ·            |              |              |              |              |              |
|      | Otras    |              |              |              |              |              |              |              |              |

| Año   | Fracción | Zn<br>(µg/g) | Mn<br>(μg/g) | Fe<br>(µg/g) | Cu<br>(µg/g) | Pb<br>(μg/g) | Co<br>(µg/g) | Ni<br>(μg/g) | Cd<br>(ng/g) |
|-------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|       | Hojas    | 29,52        | 824,43       | 143,00       | 4,14         |              |              |              |              |
| 2019  | Ramillas |              |              |              |              |              |              |              |              |
|       | Otras    |              |              |              |              |              |              |              |              |
|       | Hojas    | 35,32        | 799,26       | 277,96       | 4,77         | 1,10         | 0,15         | 1,02         | 48,43        |
| 2020  | Ramillas |              |              |              |              |              |              |              |              |
|       | Otras    |              |              |              |              |              |              |              |              |
|       | Hojas    | 42,30        | 849,64       | 271,67       | 5,08         |              |              |              |              |
| 2021  | Ramillas |              |              |              |              |              |              |              |              |
|       | Otras    |              |              |              |              |              |              |              |              |
|       | Hojas    | 34,99        | 882,29       | 226,69       | 4,68         | 1,10         | 0,15         | 1,02         | 48,43        |
| Media | Ramillas |              |              |              |              |              |              |              |              |
|       | Otras    | 698,96       | 231,29       | 193,41       | 6,02         |              |              |              |              |

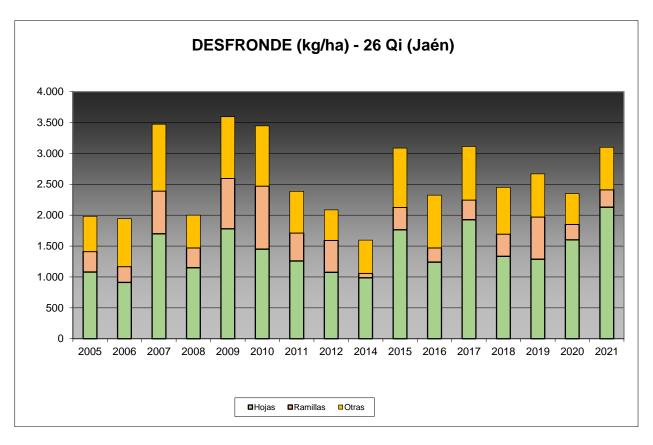



FIG 27: Fracciones de desfronde o litterfall. Serie histórica

Puede verse, con carácter general, cómo el desfronde se sitúa en torno a los 2.000-3.500 kg/ha, con un marcado aumento a lo largo del último año, particularmente por lo que se refiere al incremento de la fracción foliar que alcanza el valor mayor de la serie. Los contenidos en carbono del desfronde, próximos al 50% ponen de manifiesto su papel como sumidero de gases de efecto invernadero como el CO<sub>2</sub>.

# 9. Fenología.

La fenología estudia la relación entre los fenómenos climáticos y las características morfológicas del desarrollo anual de los vegetales. Tras las observaciones de series anuales suficientemente representativas, puede obtenerse una valiosa información sobre la respuesta de la vegetación frente a variaciones climáticas, acrecentar el papel de las especies forestales como bioindicadoras y explicar el estado actual de la vegetación. El conocimiento de las fases fenológicas del arbolado es también una importante herramienta de gestión fitosanitaria de las masas forestales, pues el ciclo biológico y la capacidad de daño de buena parte de las plagas forestales van ligadas al desarrollo de una determinada fase, particularmente en el caso de los insectos defoliadores. Los cambios fenológicos en la vegetación juegan además un importante papel en la modelación del paisaje.

La evaluación fenológica se hace sobre 20 árboles de la parcela, seleccionando de entre aquellos de las clases dominante o codominante y preferentemente con buena visibilidad de copa; siempre desde una posición fija para evitar sesgos de observación; quincenalmente desde 1999 hasta 2010 y de forma mensual a partir de entonces.

La evaluación de las distintas fases fenológicas ha experimentado sucesivos cambios metodológicos a lo largo de la serie histórica de estudio, resultando de entre ellas, las más significativas y coherentes la aparición de hoja y la floración; siempre haciendo la salvedad de que se ha considerado que una fase comenzaba cuando lo hacía el 50% de la población muestra.

Se presentan a continuación y para las fases mencionadas, los valores históricos obtenidos en la parcela 26Qi, de entre ellos el comienzo y fin de fase; su duración o amplitud; el número de días transcurrido entre el 1 de enero y la fecha de inicio de la fase, y –como esbozo de la influencia de la temperatura en el fenómeno- los días-grado transcurridos desde el 1 de enero (periodo de parada vegetativa) y el comienzo de la fase, obtenido de la estación meteorológica instalada en la parcela.

TABLA 31: Resultados de la evaluación fenológica. Comienzo, final y amplitud de la fase. Días desde el 1 de enero hasta el comienzo de fase.

Temperatura acumulada (grados-día) hasta el inicio de fase.

|      | Apar            | rición Hoja/A  | Acícula ≥ | 50% Poblac             | ción                      | Floración ≥ 50% Población |                |        |                        |                           |  |  |
|------|-----------------|----------------|-----------|------------------------|---------------------------|---------------------------|----------------|--------|------------------------|---------------------------|--|--|
| Año  | Fecha<br>Inicio | Fecha<br>Final | Durac.    | Días<br>desde<br>01/01 | Temp.<br>Acum.<br>(°Cdía) | Fecha<br>Inicio           | Fecha<br>Final | Durac. | Días<br>desde<br>01/01 | Temp.<br>Acum.<br>(°Cdía) |  |  |
| 1999 | 15/04/99        | 15/06/99       | 61        | 104                    | 1015                      | 30/03/99                  | 30/09/99       | 184    | 88                     | 757                       |  |  |
| 2000 | 29/03/00        | 03/05/00       | 35        | 88                     | 908                       |                           |                |        |                        |                           |  |  |
| 2001 | 13/03/01        | 17/04/01       | 35        | 71                     | 563                       |                           |                |        |                        |                           |  |  |
| 2002 | 02/04/02        | 28/05/02       | 56        | 91                     | 918                       |                           |                |        |                        |                           |  |  |
| 2003 | 01/04/03        | 20/05/03       | 49        | 90                     | 592                       |                           |                |        |                        |                           |  |  |
| 2004 | 30/03/04        | 28/06/04       | 90        | 89                     | 757                       | 02/03/04                  | 30/03/04       | 28     | 61                     | <b>497</b>                |  |  |
| 2005 | 12/04/05        | 10/05/05       | 28        | 101                    | 849                       | 12/04/05                  | 26/04/05       | 14     | 101                    | 849                       |  |  |
| 2006 | 18/04/06        | 02/05/06       | 14        | 107                    | 955                       |                           |                |        |                        |                           |  |  |
| 2007 | 27/03/07        | 12/06/07       | 77        | 85                     | 766                       | 10/04/07                  | 08/05/07       | 28     | 99                     | 876                       |  |  |
| 2008 | 01/04/08        | 20/05/08       | 49        | 91                     | 922                       | 01/04/08                  | 15/04/08       | 14     | 91                     | 922                       |  |  |
| 2009 | 31/03/09        | 14/04/09       | 14        | 89                     | 805                       | 31/03/09                  | 14/04/09       | 14     | 89                     | 805                       |  |  |
| 2010 | 13/04/10        | 27/04/10       | 14        | 102                    | 937                       | 13/04/10                  | 27/04/10       | 14     | 102                    | 937                       |  |  |
| 2011 | 29/03/11        | 20/04/11       | 22        | 87                     | 779                       | 20/04/11                  | 24/05/11       | 34     | 109                    | 1177                      |  |  |
| 2012 | 25/04/12        | 29/05/12       | 34        | 115                    | 835                       | 25/04/12                  | 29/05/12       | 34     | 115                    | 835                       |  |  |
| 2014 | 22/04/14        | 27/05/14       | 35        | 111                    | 1243                      | 22/04/14                  | 27/05/14       | 35     | 111                    | 1243                      |  |  |
| 2015 | 28/04/15        | 26/05/15       | 28        | 117                    | 1248                      | 28/04/15                  | 26/05/15       | 28     | 117                    | 1248                      |  |  |
| 2016 | 29/03/16        | 26/04/16       | 28        | 88                     | 772                       | 26/04/16                  | 08/06/16       | 43     | 116                    | 1103                      |  |  |

|       | Apar            | rición Hoja/A  | Acícula ≥ | 50% Poblac             | Floración ≥ 50% Población |                 |                |        |                        |                           |  |
|-------|-----------------|----------------|-----------|------------------------|---------------------------|-----------------|----------------|--------|------------------------|---------------------------|--|
| Año   | Fecha<br>Inicio | Fecha<br>Final | Durac.    | Días<br>desde<br>01/01 | Temp.<br>Acum.<br>(°Cdía) | Fecha<br>Inicio | Fecha<br>Final | Durac. | Días<br>desde<br>01/01 | Temp.<br>Acum.<br>(°Cdía) |  |
| 2017  | 04/04/17        | 25/04/17       | 21        | 93                     | 920                       | 04/04/17        | 25/04/17       | 21     | 93                     | 920                       |  |
| 2018  | 25/04/18        | 04/07/18       | 70        | 114                    | 1040                      | 25/04/18        | 04/07/18       | 70     | 114                    | 1040                      |  |
| 2019  | 24/04/19        | 03/07/19       | 70        | 113                    | 1214                      | 20/03/19        | 04/06/19       | 76     | 78                     | 797                       |  |
| 2020  | 23/04/20        | 24/06/20       | 62        | 113                    | 1252                      | 23/04/20        | 24/06/20       | 62     | 113                    | 1252                      |  |
| 2021  | 25/03/21        | 26/05/21       | 62        | 83                     | 748                       | 25/03/21        | 26/05/21       | 62     | 83                     | 748                       |  |
| 2022  | 29/03/22        | 24/05/22       | 56        | 87                     | 913                       | 29/03/22        | 24/05/22       | 56     | 87                     | 913                       |  |
| Media |                 |                | 44        | 97                     | 911                       |                 |                | 45     | 98                     | 940                       |  |

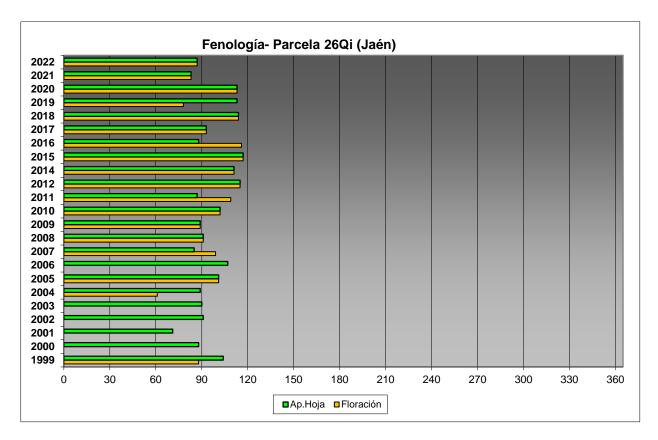



FIG 28: Fases fenológicas. Días desde 1 de enero hasta comienzo de fase.

Como puede verse en los gráficos anteriores, el comienzo de las distintas fases es bastante precoz, habiéndose iniciado los ciclos a lo largo del mes de marzo por regla general, con algún retraso hasta abril e incluso algún comienzo de floración en febrero en 2004. Por regla general, floración y aparición de la hoja se han presentado simultáneamente, haciéndolo hacia finales de marzo a lo largo de los dos últimos años, con un adelantamiento respecto al periodo precedente.



FIG. 29: Encina brotando. Aparición hoja del año y amentos masculinos (abril).

## 10. Cintas diamétricas.

Como se ha indicado anteriormente, las parcelas van dotadas de dendrómetros en continuo, 5 instalados en 1999 ampliados a 15 en 2010, de los que se ha tomado la medida de forma quincenal hasta 2009 y mensualmente a partir de 2010.

Para cada una de las cintas instaladas y año de observación se ha obtenido el crecimiento medio, mediante diferencia entre los valores máximos y mínimos anuales —expresado en datos absolutos y en porcentaje sobre el diámetro mínimo- junto con la oscilación o diferencia entre el diámetro en enero y diciembre de cada año, en idénticos términos que el parámetro anterior; y que no tiene necesariamente que coincidir, debido a movimientos de expansión y contracción del tronco ligados al flujo o parón de la savia.

TABLA 32: Valor medio dendrómetros. Crecimiento medio: diferencia en cm y porcentaje entre el máximo y mínimo del año. Oscilación media: diferencia y porcentaje entre los valores de enero y diciembre (o comienzo/fin de año en años incompletos)

| AÑO  | Crecimiento<br>medio (cm) | Crecimiento medio (%) | Oscilación media<br>(cm) | Oscilación media<br>(%) |
|------|---------------------------|-----------------------|--------------------------|-------------------------|
| 2004 | 0,11                      | 0,35                  | 0,11                     | -0,23                   |
| 2005 | 0,18                      | 0,63                  | 0,18                     | 0,22                    |
| 2006 | 0,15                      | 0,51                  | 0,15                     | 0,50                    |
| 2007 | 0,56                      | 1,89                  | 0,56                     | 0,57                    |
| 2008 | 0,29                      | 0,97                  | 0,29                     | 0,82                    |
| 2009 | 0,36                      | 1,06                  | 0,36                     | 0,06                    |
| 2010 | 0,22                      | 0,72                  | 0,22                     | 0,51                    |
| 2011 | 0,28                      | 0,92                  | 0,28                     | 0,64                    |
| 2012 | 0,10                      | 0,32                  | 0,10                     | 0,15                    |
| 2014 | 0,13                      | 0,39                  | 0,13                     | 0,36                    |
| 2015 | 0,10                      | 0,30                  | 0,10                     | 0,26                    |
| 2016 | 0,24                      | 0,76                  | 0,24                     | 0,60                    |
| 2017 | 0,25                      | 0,81                  | 0,25                     | 0,63                    |
| 2018 | 0,25                      | 0,83                  | 0,25                     | 0,62                    |
| 2019 | 0,27                      | 0,87                  | 0,27                     | 0,74                    |
| 2020 | 0,27                      | 0,86                  | 0,27                     | 0,71                    |
| 2021 | 0,25                      | 0,79                  | 0,25                     | 0,23                    |

| AÑO   | Crecimiento medio (cm) | Crecimiento medio (%) | Oscilación media<br>(cm) | Oscilación media<br>(%) |  |
|-------|------------------------|-----------------------|--------------------------|-------------------------|--|
| 2022  | 0,23                   | 0,73                  | 0,23                     | 0,69                    |  |
| Media | 0,23                   | 0,76                  | 0,23                     | 0,45                    |  |

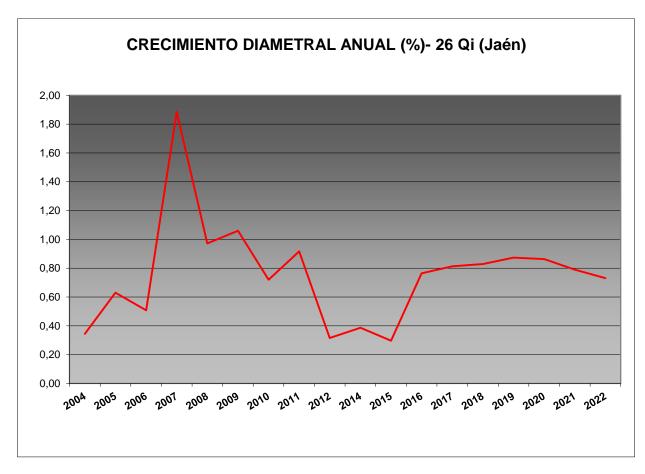
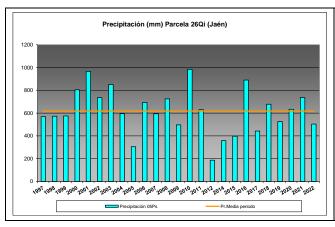



FIG 30: Crecimiento diametral anual. Porcentaje sobre el inicio.


Como puede verse en el gráfico anterior, el crecimiento diamétrico anual en la parcela considerada ha oscilado, excepción hecha del primer año de evaluación, entre el 0,30% de 2015 y el 1,89% de 2007, situándose por regla general en valores ligeramente inferiores al 1% anual. Durante el último tramo de la serie se observa un comportamiento muy estable en torno al 0,80% con una ligera reducción durante los últimos dos años.

# 11. Meteorología.

Se presenta a continuación un resumen de las principales variables meteorológicas recogidas en la estación de la parcela, de los datos disponibles en el sistema en el momento de la redacción del presente informe. Cabe hacer constar, por lo que se refiere a la meteorología, que los datos correspondientes a 2012 abarcan sólo el periodo enero-junio.

TABLA 33: Parámetros meteorológicos básicos. Precipitación anual. Temperatura media anual, máxima de las máximas, mínima de las mínimas, media de las máximas, media de las mínimas. Radiación solar media. Humedad relativa media. Velocidad del viento media y máxima.

| Año   | Prec | T<br>med | T<br>MAX | T<br>MIN | T<br>max | T<br>min | Rad<br>med | HR<br>med   | V<br>viento<br>med | V<br>viento<br>max |
|-------|------|----------|----------|----------|----------|----------|------------|-------------|--------------------|--------------------|
|       | (mm) |          |          | (°C)     |          |          | $(W/m^2)$  | (%)         | (m                 | /s)                |
| 1997  | 569  | 8,3      | 18,4     | 0,2      | 11,6     | 5,6      | 64,8       | 87,8        | 0,9                | 19,3               |
| 1998  | 573  | 13,7     | 39,1     | -7,6     | 19,5     | 8,7      | 190,3      | 63,7        | 1,3                | 27,2               |
| 1999  | 575  | 15,5     | 39,0     | -7,0     | 21,4     | 10,2     | 399,2      |             |                    | 17,0               |
| 2000  | 805  | 15,6     | 39,5     | -12,7    | 21,4     | 10,1     | 204,0      | 56,4        | 1,3                | 22,7               |
| 2001  | 967  | 15,0     | 38,8     | -13,5    | 20,5     | 9,4      | 217,5      | 63,4        | 1,5                | 19,7               |
| 2002  | 736  | 15,6     | 38,1     | 1,5      | 21,1     | 10,6     | 246,8      | 65,0        | 1,4                | 17,5               |
| 2003  | 850  | 15,6     | 38,1     | 1,5      | 21,1     | 10,6     | 246,8      | 65,0        | 1,4                | 17,5               |
| 2004  | 595  | 15,4     | 40,0     | -5,2     | 21,0     | 10,1     |            | 59,6        | 1,5                | 20,1               |
| 2005  | 305  | 15,8     | 41,7     | -9,4     | 21,9     | 10,0     |            | 54,8        | 1,7                | 19,7               |
| 2006  | 693  | 16,1     | 38,9     | -3,8     | 21,7     | 10,9     | 194,3      | 63,7        | 1,6                | 17,8               |
| 2007  | 594  | 15,3     | 39,4     | -1,7     | 21,2     | 10,1     |            | 60,2        | 1,6                |                    |
| 2008  | 725  | 16,4     | 37,8     | -12,0    | 22,5     | 10,3     | 219,4      | 61,9        | 1,8                | 18,2               |
| 2009  | 497  | 18,5     | 38,8     | -3,5     | 24,6     | 12,9     | 210,8      | 57,0        | 1,7                | 21,2               |
| 2010  | 984  | 17,4     | 41,8     | -2,1     | 23,0     | 12,3     |            | 61,9        | 1,6                | 20,8               |
| 2011  | 630  | 16,6     | 40,9     | -1,3     | 22,6     | 10,9     | 220,3      | 69,4        | 6,7                | 54,0               |
| 2012  | 187  | 14,1     | 41,8     | -4,1     | 20,1     | 8,6      | 262,2      | 61,3        | 1,8                | 19,4               |
| 2014  | 358  | 17,1     | 40,1     | -1,5     | 23,9     | 10,7     | 192,0      | 64,3        | 1,6                | 16,6               |
| 2015  | 397  | 17,3     | 41,1     | -2,6     | 23,4     | 11,8     | 245,0      | 64,8        | 1,1                | 17,2               |
| 2016  | 890  | 16,4     | 43,0     | -3,4     | 21,9     | 11,3     | 237,0      | 70,2        | 1,2                | 18,7               |
| 2017  | 443  | 17,9     | 44,5     | -4,8     | 25,1     | 10,6     | 280,1      | 64,0        | 1,1                | 15,2               |
| 2018  | 678  | 15,8     | 41,1     | -5,1     | 21,2     | 10,5     | 240,4      | <b>74,8</b> | 1,1                | 20,0               |
| 2019  | 525  | 16,8     | 40,1     | -0,7     | 22,8     | 11,3     | 247,8      | 68,4        | 1,1                | 19,3               |
| 2020  | 634  | 17,0     | 40,9     | -2,8     | 22,8     | 11,8     | 240,7      | 73,2        | 0,9                | 21,6               |
| 2021  | 736  | 16,9     | 44,6     | -6,9     | 22,6     | 11,5     | 243,4      | 72,2        | 1,0                | 22,1               |
| 2022  | 504  | 18,3     | 41,5     | 1,3      | 24,3     | 12,7     | 240,1      | 69,4        | 1,1                | 19,2               |
| Media | 618  | 15,9     | 39,6     | -4,3     | 21,7     | 10,5     | 221,4      | 65,4        | 1,6                | 20,9               |



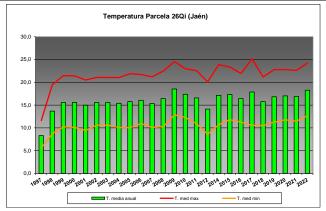



FIG 31: Principales variables meteorológicas.

**A**ÑO **2022** 

Siguiendo la metodología publicada por ICP-Forests, se adjuntan a continuación varios parámetros definitorios de estrés climático, relativos a temperatura y precipitación, si bien cabe hacer constar que no todas las series meteorológicas están disponibles o completas.

TABLA 34: Parámetros de estrés meteorológico. DT: número de días con una temperatura máxima del aire superior a 30°C. DH: número de días con una temperatura máxima del aire inferior a 0°C. PMAX5: precipitación máxima acumulada a lo largo de 5 días durante el invierno (1 de enero a 28 de febrero y 1 de octubre a 31 de diciembre). PPES: días con una precipitación de más de 20 mm durante el periodo vegetativo (1 de mayo a 31 de agosto). NOPREC: número de días seguidos sin precipitación durante el periodo vegetativo (1 de mayo a 31 de agosto).

| A ~ - | DT   | DH   | P            | MAX5          | PPES | N(   | NOPREC        |  |
|-------|------|------|--------------|---------------|------|------|---------------|--|
| Año   | días | Días | mm Intervalo |               | Días | Días | Intervalo     |  |
| 2000  | 85   | 1    | 87,8         | 22/12 a 26/12 | 0    | 88   | 05/06 a 31/08 |  |
| 2001  | 75   | 0    | 70,4         | 23/01 a 27/01 | 0    | 79   | 16/05 a 31/08 |  |
| 2002  | 76   | 0    | 63,6         | 13/11 a 17/11 | 0    | 81   | 12/06 a 31/08 |  |
| 2003  |      |      |              |               |      |      |               |  |
| 2004  | 82   | 0    | 63,4         | 21/02 a 25/02 | 2    | 41   | 14/06 a 24/07 |  |
| 2005  | 90   | 0    | 74,0         | 10/10 a 14/10 | 1    | 80   | 13/06 a 31/08 |  |
| 2006  | 84   | 0    | 31,0         | 18/02 a 22/02 | 1    | 68   | 10/08 a 16/08 |  |
| 2007  | 68   | 0    | 44,0         | 08/02 a 12/02 | 0    | 47   | 19/06 a 04/08 |  |
| 2008  | 71   | 0    | 23,6         | 02/01 a 06/01 | 0    | 48   | 15/07 a 31/08 |  |
| 2009  | 96   | 0    | 146,2        | 18/12 a 22/12 | 0    | 86   | 07/06 a 31/08 |  |
| 2010  | 78   | 0    | 145,0        | 21/02 a 25/02 | 0    | 60   | 17/06 a 15/08 |  |
| 2011  | 97   | 0    | 89,0         | 13/02 a 17/02 | 1    | 85   | 08/06 a 31/08 |  |
| 2012  |      |      |              |               |      |      |               |  |
| 2013  |      |      |              |               |      |      |               |  |
| 2014  | 95   | 0    | 77,8         | 11/11 a 15/11 | 0    | 68   | 25/06 a 31/08 |  |
| 2015  | 92   | 0    | 45,8         | 01/11 a 05/11 | 0    | 52   | 17/06 a 07/08 |  |
| 2016  | 99   | 0    | 99,8         | 20/11 a 24/11 | 4    | 56   | 07/07 a 31/08 |  |
| 2017  | 128  | 0    | 43,4         | 10/02 a 14/02 | 5    | 101  | 14/05 a 22/08 |  |
| 2018  | 91   | 0    | 52,8         | 05/11 a 09/11 | 0    | 45   | 10/06 a 24/07 |  |
| 2019  | 95   | 0    | 148,6        | 17/12 a 21/12 | 0    | 121  | 03/05 a 21/08 |  |
| 2020  | 92   | 0    | 46,5         | 25/11 a 29/11 | 2    | 59   | 13/06 a 10/08 |  |
| 2021  | 94   | 0    | 128,2        | 29/10 a 02/11 | 0    | 68   | 18/06 a 24/08 |  |
| 2022  | 113  | 0    | 122,4        | 11/12 a 15/12 | 0    | 99   | 05/05 a 11/08 |  |

## 12. Índice de Área Foliar.

El Índice de Área Foliar (Leaf Area Index o LAI) es un parámetro adimensional que se define como el área total de la superficie superior de las hojas por área de unidad de terreno que se encuentre directamente debajo de la planta. El LAI permite estimar la capacidad fotosintética de la vegetación y ayuda a entender la relación entre acumulación de biomasa y rendimiento bajo condiciones ambientales imperantes en una región determinada.

Su medición se efectúa anualmente en época de máxima foliación (generalmente a lo largo del verano) en todas las parcelas, y adicionalmente en invierno en aquellas pobladas por frondosas, mediante fotografía hemisférica situada en 16 ubicaciones fijas en cada parcela siguiendo una cuadrícula preestablecida, tratada posteriormente mediante software específico. Las evaluaciones han quedado normalizadas a partir de 2014, incluyéndose en el presente informe los datos disponibles a partir de dicha fecha, con la salvedad de haber corregido por un algoritmo más exacto a partir de 2016, de acuerdo con las actualizaciones del manual, a lo que pueden atribuirse parte de las variaciones interanuales.

TABLA 35: Índice de Área Foliar (LAI) por punto de observación y año.

| SITIO | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Media |
|-------|------|------|------|------|------|------|------|------|------|-------|
| S-01  | 1,30 | 1,09 | 1,22 | 1,09 | 1,26 | 0,63 | 1,07 | 0,96 | 1,13 | 1,08  |
| S-02  | 1,42 | 1,06 | 1,05 | 0,97 | 1,30 | 0,82 | 1,10 | 0,96 | 0,99 | 1,08  |
| S-03  | 1,64 | 1,15 | 1,17 | 1,04 | 1,27 | 0,81 | 1,15 | 1,84 | 0,97 | 1,23  |
| S-04  | 1,08 | 0,91 | 1,05 | 0,92 | 1,23 | 0,57 | 1,57 | 0,77 | 1,20 | 1,03  |
| S-05  | 1,31 | 1,05 | 1,20 | 1,14 | 1,19 | 0,60 | 1,21 | 1,34 | 1,01 | 1,12  |
| S-06  | 1,62 | 1,25 | 1,26 | 0,98 | 1,22 | 0,92 | 1,50 | 0,98 | 0,94 | 1,19  |
| S-07  | 1,26 | 1,05 | 1,17 | 1,04 | 1,04 | 0,59 | 1,03 | 0,97 | 1,09 | 1,03  |
| S-08  | 2,00 | 1,42 | 1,16 | 0,98 | 1,14 | 0,85 | 2,00 | 0,92 | 1,15 | 1,29  |
| S-09  | 1,11 | 0,97 | 1,04 | 0,95 | 1,01 | 0,45 | 1,00 | 0,52 | 0,99 | 0,89  |
| S-10  | 1,73 | 1,44 | 1,08 | 1,05 | 1,32 | 0,78 | 1,46 | 1,29 | 0,88 | 1,22  |
| S-11  | 1,11 | 1,02 | 1,04 | 0,87 | 0,85 | 0,52 | 0,77 | 0,50 | 1,08 | 0,86  |
| S-12  | 1,36 | 1,23 | 1,19 | 0,89 | 0,92 | 0,41 | 1,12 | 0,67 | 1,03 | 0,98  |
| S-13  | 1,99 | 1,89 | 1,41 | 1,28 | 1,38 | 1,04 | 0,77 | 0,75 | 0,91 | 1,27  |
| S-14  | 1,44 | 1,42 | 1,18 | 1,00 | 1,18 | 0,65 | 2,60 | 0,76 | 0,79 | 1,22  |
| S-15  | 1,35 | 1,34 | 1,26 | 0,83 | 1,17 | 0,46 | 2,93 | 0,68 | 1,09 | 1,23  |
| S-16  | 0,95 | 1,04 | 0,99 | 0,75 | 0,79 | 0,57 | 0,87 | 0,58 | 1,01 | 0,84  |
| Media | 1,42 | 1,21 | 1,15 | 0,99 | 1,14 | 0,67 | 1,39 | 0,91 | 1,02 | 1,10  |

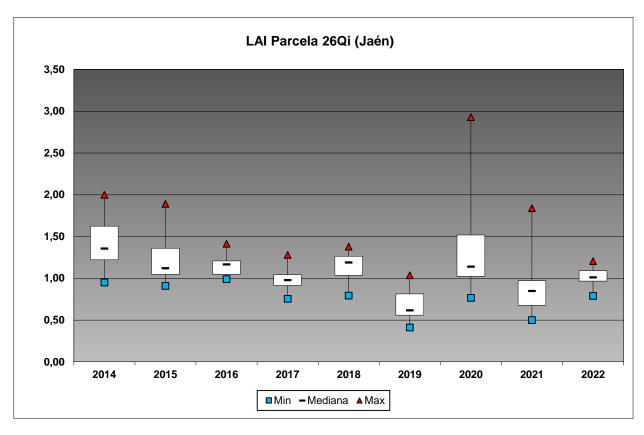



FIG 32: Diagrama de cajas LAI anual.

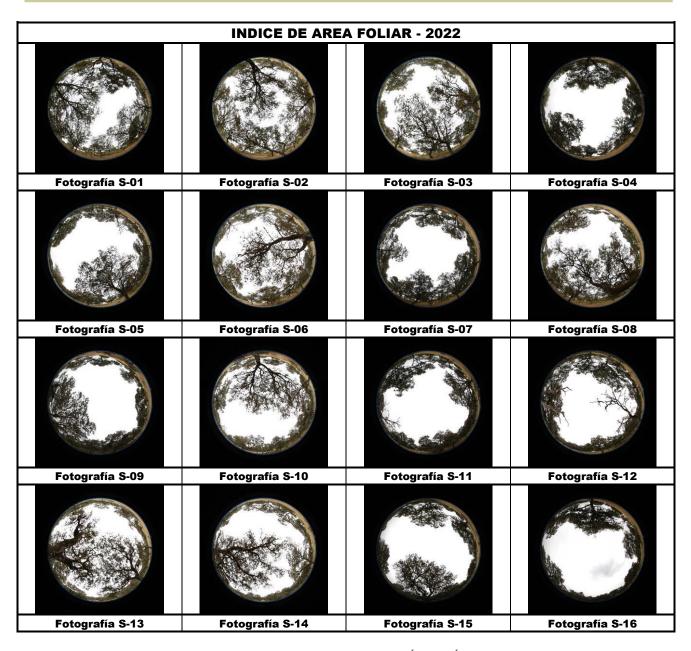



FIG 33: Fotos hemisféricas para determinación del Índice de Área Foliar.