

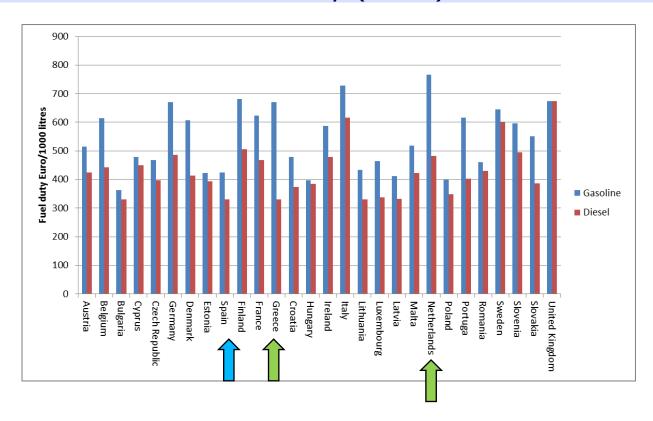
Evaluation of the effectiveness of measures to improve quality air applied in northern and central Europe

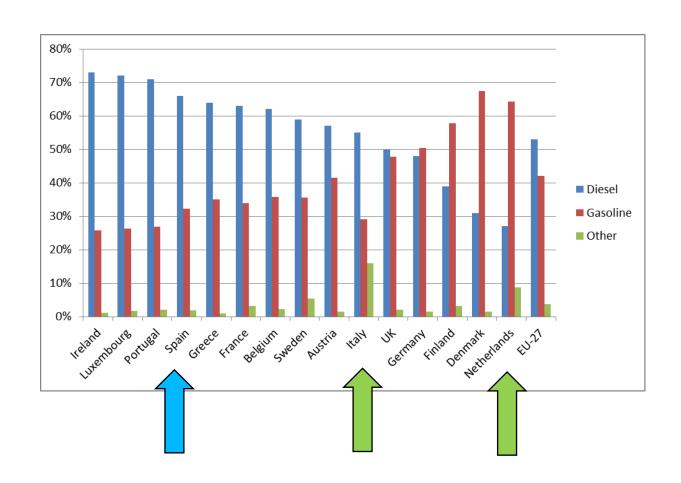
Claire Holman
University of Birmingham/Brook Cottage Consultants

Mitigation Measures from Northern / Central Europe

- 1. Low emission zones (LEZs)
- 2. Discourage diesel cars
- 3. Taxation/pricing strategies to encourage electric, hybrid electric and gas vehicles
- 4. NOx abatement from road vehicles
- 5. Eco-efficient car labels
- 6. Efficacy of road cleaning
- 7. Efficacy of dust suppressants
- 8. Domestic and agricultural biomass burning
- 9. Shipping emissions
- 10. Interference and synergy of air quality and climate

Solutions: Encouraging the use of cleaner cars


- Discouraging diesel cars
- Encouraging cleaner vehicles
- Mandatory eco-label
- Low Emission Zones (LEZs)


Fuel duty (2015)

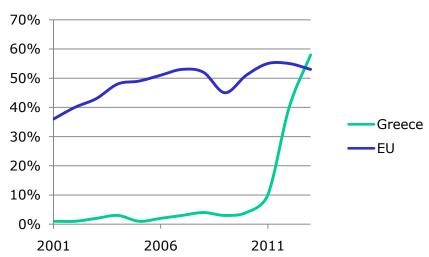
New car sales by fuel (2014)

Discouraging diesel cars

- Car purchase and/or ownership taxes - CO₂ based in most MS
- Diesel taxation and pump prices - greater than gasoline in most MS.
- Favours purchase and use of diesel cars
- But taxation/diesel car sales relationship is complex.

- Gap between type approval and real world CO₂ emissions (2014)
 - 42% diesel
 - 37% gasoline
 - 50% hybrid
- Diesel high NOx and PM emissions
- Diesel Benefits overstated

Banning diesel cars


Greece

- 1991 until 2011 diesel cars banned in Athens and Thessaloniki
- Diesel 20% cheaper than gasoline
- Rapid increase in diesel car sales since ban lifted

London

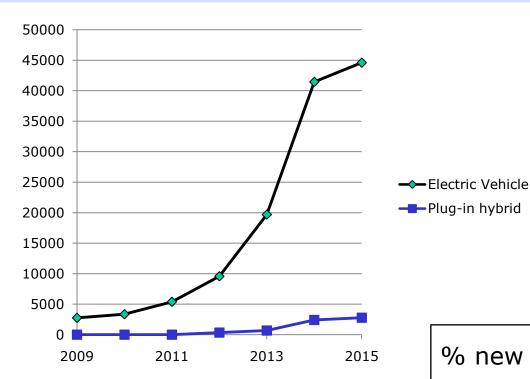
2014: Attempts to ban diesel cars from London LEZ dropped due to public opposition

New Cars: % Diesel

Paris

2015: Media announced *Mayor to ban most diesel vehicles from the city by 2020*; reality gasoline and diesel will be treated the same in LEZ from 2017

Diesel cars in the Netherlands


- 20-28% new cars diesel from 2001 to 2014
- Highest duty on gasoline in the EU
- Diesel 22% cheaper than gasoline at pump.
- Long term policy to penalise diesel cars

- 1998 the National Environmental Policy target to **reduce** the share of diesel vehicles from 11% in 1998 to 5% in 2010 (actually 20% in 2010
- Car taxation primarily CO₂ based since 2008. A penalty for diesel cars

Electric new car market in Norway

Norway EV market leader due to Government support for 20+ years Incentives added sequentially until market responded

% new cars	Battery EVs	Plug-in hybrids	Hybrids
Norway	12.6	1.2	6.9
Netherlands	0.9	3.1	3.7
Spain	0.1	0	1.4
EU-28	0.3	0.2	1.4

Norway electric car market

- Incentives added sequentially until the market responded.
- The price difference between BEV and petrol car can be €1,000.

- Exempt from
 - vehicle registration tax
 - road tolls
 - VAT (normally 25%)
- Bus lane access
- BEVs -reduced annual tax
- Reduced rates on the main coastal ferries

Vehicle eco-label

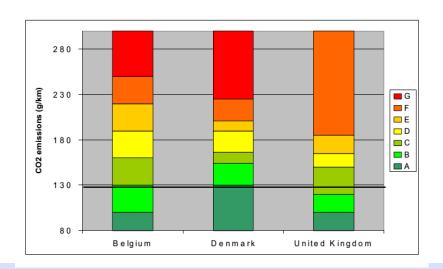
- Mandatory EU car CO₂ label applied differently in each Member State
- Many use A-F / G classes
- Can rank same car very differently
- Motoring organisations have separate eco-labels include

NOx/PM

Untere Mittel klasse

yyyyy xxx 0.0

Eurox; xx kW; xxxx com; 01/000 km


Gesamt:
00 Punkte

Coz.
00 Punkte

1 Dates - 20 Pete: 2 Steme 204-40 Pete.
4 Steme 78-50 Pete: 5 Steme 20-40 Pete.

Comparison of the CO₂ emission bands (gasoline cars) used in the energy efficiency rating systems

Source: ADAC, 2005

Proposed vehicle eco-label

- Mandatory EU wide scheme
- Treat NOx, PM and CO₂ emissions equally
- Apply to new & used vehicles
- To take account of realworld emissions
- 'Well to tank' to enable ICEs and EVs to be compared

- Based on domestic appliances label (A to G rating) with running costs.
- Updated on annual basis by allocating a fixed percentage of models to each band.
- Long term public education is required to support the eco-label

Europe's LEZs (December 2015)

Country	Number of LEZs	Applicable vehicles	National Framework
Austria	7	HGVs	Yes
Denmark	4	HGVs + buses	Yes
Finland	1	Buses/refuse trucks	NO
France	2	HGVs	No
Germany	73	All 4 or more wheeled vehicles	Yes
Greece	1	All vehicles	No
Italy	Approx. 100*	Various	No
Netherlands	13	HGVs	Yes
Portugal	1	Cars & HGVs	No
Sweden	8	HGVs + buses	Yes
UK	5	Various	No

^{*} Excludes large number of LEZs in communities in Lombardy region

Source: http://urbanaccessregulations.eu

LEZ Summary

Area

Range >1,000 km² to individual roads Local LEZ embodied in regional LEZ with differing requirements (e.g. Milan)

Vehicles

Generally HGVs and/or buses
Germany: all except 2-wheeled
Italy: focus on 2-stroke 2 -wheeled
Many established LEZs extending types restricted
Exempt vehicles e.g. EVs/hybrids, residents, emergency services)

Emissions

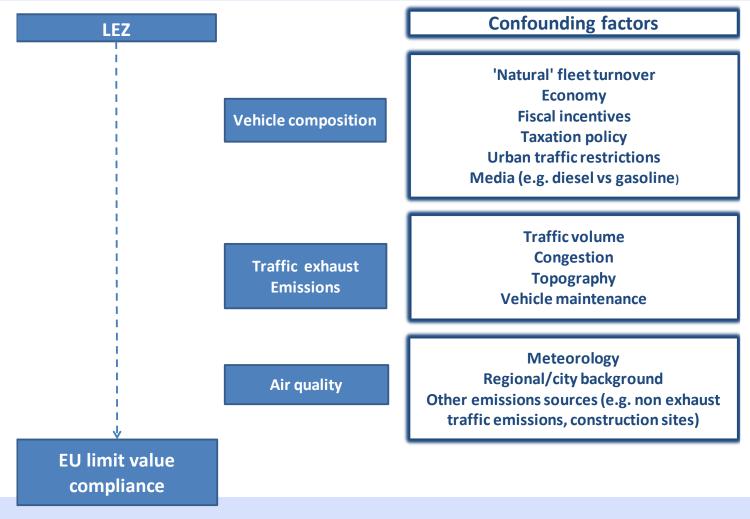
Generally Euro 1-4/ Euro I to IV
Diesel standards more stringent than gasoline
Retrofitting DPF generally allowed
Some based on vehicle weight (e.g. Athens)

Operation

24/7
Daytime only e.g. (07:30 - 19:30)
Everyday/ weekdays only
All year/winter only (e.g. October-April)

Enforcement

Manually by police (eg Germany)
Automatic number plate recognition (eg London)


National Framework

National framework
National framework with local options
Local decision

Difficulties in assessing effect of LEZs

German LEZs

Green sticker

- Diesel at least Euro 4 or IV, or Euro 3 or III with a DPF
- Gasoline at least Euro 1 standard

Yellow sticker

 Diesel at least Euro 3 or III, or Euro 2 or II with a DPF

Red sticker

 Diesel vehicles meeting at least Euro 2 or II or Euro 1 plus DPF.

- Almost all LEZs now require green stickers
- Cars, vans, HDVs restricted
- Generally more stringent than elsewhere
- Manual enforcement by police
- Non compliance €80 fine + traffic penalty point

German LEZs: Reduction in Annual Mean PM₁₀

- Berlin, Mannheim, Stuttgart, Tubingen, Ludwigsburg No effect (Nierderemaier, 2009)
- Berlin, Cologne **5-7%** (Bruckmann & Lutz, 2010)
- Berlin 3% (Lutz & Rauterberg-Wuff, 2013)
- Bremen 6% (Sadler, 2011)
- Cologne **7%** (Sadler, 2011) (interference from construction site?)
- Hannover 1-2% (Sadler, 2011)
- Leipzig **no effect** (6-15% summer) (Löschau et al., 2013)
- Munich* 13% (19.6% in summer; 6.8% in winter) (Fensterer et al., 2014); 5-12% (Cyrys et al, 2009); no effect (Morfeld et al, 2013)
- Ruhr area 4% (Sadler, 2011)
- Average 9% over several unnamed LEZs (0% for small LEZs to 15% in Berlin) (April-October)(Wolff, 2014)

Largely relate to Phase 1

Most studies have not adequately taken account of factors that influence air quality

Other LEZ Studies- Effects on PM Annual Mean

No effect:

Milan, PM₁₀, PM_{2.5}, PM₁ (very short term study), Invernizzi et al., 2011

 $\underline{\rm Amsterdam},$ The Hague, Den Bosch, Tilburg, Utrecht , ${\rm PM_{10},\,PM_{2.5}},$ Boogaard et al., 2012

Amsterdam, PM₁₀, Panteliadis et al., 2014

London, PM₁₀, Barrett, 2014

ilite:

German LEZs: Reduction in Annual Mean Elemental Carbon (EC)

- Berlin **14-16%** (Lutz, 2009)
- Berlin 56% (traffic contribution) (Lutz & Rauterberg-Wulff, 2013)
- Leipzig 6-14% (14-29% summer)(Löschau et al., 2013)
- Munich 55%* (traffic contribution) (Qadir et al., 2013)

*LEZ + HGV ban

Larger effect than for PM_{10} Traffic contribution greater for EC than for PM_{10} May be more important determinant of health effects

German LEZs: Reduction in Annual Mean NO₂

- Berlin 7-10% (Lutz & Rauterberg-Wuff, 2013)
- Bremen 6% (Sadler, 2011)
- Cologne 1.5% (Sadler, 2011)
- Hanover 5%(Sadler, 2011)
- Ruhr area 1% (Sadler, 2011)

All Phase 1 studies

Studies have not adequately taken account of factors that influence air quality

German Multi-city studies

Reduction in annual mean concentrations

19 cities

 $PM_{10} \leq 0.2 \ \mu g/m^3 \quad (-1\%)$

EC $\leq 0.5 \,\mu g/m^3$ (-9%)

OC $\leq 0.3 \,\mu g/m^3$ (-3%)

PM_{2 5} no effect

17 cities

 $NO_x \leq 2 \mu g/m^3 \quad (-4\%)$

High quality studies

Morfeld et al., (2014), Pneumologie, **68**, 173-186 Morfeld et al., (2014), Plos One, **9** (8) e102999

Shipping emissions

- Emissions poorly controlled
- No emission control area (ECA) for Mediterranean Sea
- Only EU ECAs controls sulphur emissions in North Sea, English Channel and Baltic Sea
- Has been affective at reducing on shore SO₂ concentrations

- Local measures include
 - Emissions based fairways dues and port fees
 - Environmental Ship
 Index/Clean Shipping Index
 enables ports to provide a
 consistent approach to
 classifying vessels based on
 their SOx and NOx emissions
 - Shore based power
 - Voluntary agreements e.g. with cruise industry

Conclusions (1)

- Influencing motorists away from diesel <u>unlikely</u> until fiscal incentives change
- Promoting cleaner vehicle technologies requires long term (decades) consistent policies
- Good public information on air quality implications of fuel choice required
- A mandatory eco-label across EU may help public understanding
- Eco-label needs to treat <u>PM, NOx and CO₂ emissions</u> equally

Conclusions (2)

- Evidence of <u>benefit of German LEZs</u>
- Reduces annual mean PM₁₀ and NO₂ concentrations by few percent.
- Elsewhere most early LEZs only restricted HGVs; little robust evidence of benefit.
- Some evidence of a <u>larger impact on carbonaceous particles</u>
- LEZs need to be <u>stringent</u> and include <u>cars</u> to be effective to improve air quality
- Cars <u>Euro 5 for PM₁₀</u> and <u>Euro 6 for NO₂</u> (preferably Euro 6c)
- Local measures available to control ship emissions

